Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration
Phys.Lett.B 845 (2023) 138165, 2023.

Abstract (data abstract)
We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40\%) collisions. Moreover, the $\nu$ in the 0-5\% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV.

  • Fig.1 (a), 7.7GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t1

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at...

  • Fig.1 (b), 19.6GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t2

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at...

  • Fig.1 (c), 39GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t3

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at...

  • Fig.1 (d), 200GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t4

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at...

  • Fig.1 (e), 7.7GeV, $\Delta F_{q}(M)$ as a funtion of $M^{2}$

    10.17182/hepdata.137849.v1/t5

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7...

  • Fig.1 (f), 19.6GeV, $\Delta F_{q}(M)$ as a funtion of $M^{2}$

    10.17182/hepdata.137849.v1/t6

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6...

  • Fig.1 (g), 39GeV, $\Delta F_{q}(M)$ as a funtion of $M^{2}$

    10.17182/hepdata.137849.v1/t7

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39...

  • Fig.1 (h), 200GeV, $\Delta F_{q}(M)$ as a funtion of $M^{2}$

    10.17182/hepdata.137849.v1/t8

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200...

  • Fig.2 (a), 7.7GeV

    10.17182/hepdata.137849.v1/t9

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7...

  • Fig.2 (b), 11.5GeV

    10.17182/hepdata.137849.v1/t10

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 11.5...

  • Fig.2 (c), 14.5GeV

    10.17182/hepdata.137849.v1/t11

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 14.5...

  • Fig.2 (d), 19.6GeV

    10.17182/hepdata.137849.v1/t12

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6...

  • Fig.2 (e), 27GeV

    10.17182/hepdata.137849.v1/t13

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27...

  • Fig.2 (f), 39GeV

    10.17182/hepdata.137849.v1/t14

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39...

  • Fig.2 (g), 54.4GeV

    10.17182/hepdata.137849.v1/t15

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 54.4...

  • Fig.2 (h), 62.4GeV

    10.17182/hepdata.137849.v1/t16

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 62.4...

  • Fig.2 (i), 200GeV

    10.17182/hepdata.137849.v1/t17

    $\Delta F_{q}(M)$ ($q=$ 3-6) as a function of $\Delta F_{2}(M)$ in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200...

  • Fig.3 (a), the scaling index as a function of the order

    10.17182/hepdata.137849.v1/t18

    The scaling index, $\beta_{q}$ ($q=$ 3-6), as a function of $q-1$ in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.3 (b), centrality dependence of the scaling exponent

    10.17182/hepdata.137849.v1/t19

    The scaling exponent ($\nu$), as a function of average number of participant nucleons ($\langle N_{part}\rangle$), in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.4, energy dependence of the scaling exponent

    10.17182/hepdata.137849.v1/t20

    Collision energy dependence of the scaling exponent in the 0-10% and 10-40% centrality collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV

  • Fig.5 (a), 7.7GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t21

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (b), 11.5GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t22

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (c), 14.5GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t23

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (d), 19.6GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t24

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (e), 27GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t25

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (f), 39GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t26

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (g), 54.4GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t27

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (h), 62.4GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t28

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.5 (i), 200GeV, $F_{q}(M)$ of data and mixed events

    10.17182/hepdata.137849.v1/t29

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.6 (a), 7.7GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t30

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV

  • Fig.6 (b), 11.5GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t31

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 11.5 GeV

  • Fig.6 (c), 14.5GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t32

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 14.5 GeV

  • Fig.6 (d), 19.6GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t33

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV

  • Fig.6 (e), 27GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t34

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV

  • Fig.6 (f), 39GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t35

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV

  • Fig.6 (g), 54.4GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t36

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 54.4 GeV

  • Fig.6 (h), 62.4GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t37

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 62.4 GeV

  • Fig.6 (i), 200GeV, $\Delta F_{q}(M)$

    10.17182/hepdata.137849.v1/t38

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in the most central Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 200 GeV

  • Fig. 7 (a), 27GeV, $\Delta F_{2}(M)$

    10.17182/hepdata.137849.v1/t39

    Efficiency corrected and uncorrected $\Delta F_{2}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig. 7 (b), 27GeV, $\Delta F_{3}(M)$

    10.17182/hepdata.137849.v1/t40

    Efficiency corrected and uncorrected $\Delta F_{3}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig. 7 (c), 27GeV, $\Delta F_{4}(M)$

    10.17182/hepdata.137849.v1/t41

    Efficiency corrected and uncorrected $\Delta F_{4}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig. 7 (d), 27GeV, $\Delta F_{5}(M)$

    10.17182/hepdata.137849.v1/t42

    Efficiency corrected and uncorrected $\Delta F_{5}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig. 7 (e), 27GeV, $\Delta F_{6}(M)$

    10.17182/hepdata.137849.v1/t43

    Efficiency corrected and uncorrected $\Delta F_{6}(M)$ as a function of $M^{2}$ in the most central (0-5%) Au+Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.8 (a), 7.7GeV, $F_{q}(M)$ of data and mixed events,0-5%

    10.17182/hepdata.137849.v1/t44

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at...

  • Fig.8 (b), 7.7GeV, $F_{q}(M)$ of data and mixed events,5-10%

    10.17182/hepdata.137849.v1/t45

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 5-10\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.8 (c), 7.7GeV, $F_{q}(M)$ of data and mixed events,10-20%

    10.17182/hepdata.137849.v1/t46

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 10-20\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.8 (d), 7.7GeV, $F_{q}(M)$ of data and mixed events,20-30%

    10.17182/hepdata.137849.v1/t47

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 20-30\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.8 (e), 7.7GeV, $F_{q}(M)$ of data and mixed events,30-40%

    10.17182/hepdata.137849.v1/t48

    The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the 30-40\% centrality Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$...

  • Fig.8 (f), 7.7GeV, $\Delta F_{q}(M)$, 0-5%

    10.17182/hepdata.137849.v1/t49

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 0-5% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV

  • Fig.8 (g), 7.7GeV, $\Delta F_{q}(M)$, 5-10%

    10.17182/hepdata.137849.v1/t50

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 5-10% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV

  • Fig.8 (h), 7.7GeV, $\Delta F_{q}(M)$, 10-20%

    10.17182/hepdata.137849.v1/t51

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 10-20% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV

  • Fig.8 (i), 7.7GeV, $\Delta F_{q}(M)$, 20-30%

    10.17182/hepdata.137849.v1/t52

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 20-30% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV

  • Fig.8 (j), 7.7GeV, $\Delta F_{q}(M)$, 30-40%

    10.17182/hepdata.137849.v1/t53

    $\Delta F_{q}(M)$ ($q=$ 2-6) as a function of $M^{2}$ in 30-40% centrality classes at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV

Loading Data...

Ask a Question


Your question will be emailed to those involved with the submission. Please mention the relevant table.


Please log in to HEPData to send a question.