Measurement of the production cross section of prompt J/psi mesons in association with a W boson in pp collisions at sqrt{s}=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 04 (2014) 172, 2014.
Inspire Record 1276825 DOI 10.17182/hepdata.62522

The process pp--> W + J/psi provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb-1 of sqrt{s} = 7 TeV pp collisions at the LHC, the first observation is made of the production of W + prompt J/psi events in hadronic collisions, using W-->mu+nu and J/psi-->mu+mu. A yield of 27.4+7.5-6.5 W + prompt J/psi events is observed, with a statistical significance of 5.1 sigma. The production rate as a ratio to the inclusive W boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.

2 data tables match query

The W + prompt J/psi to inclusive W production cross-section ratio (times 10^6) in the J/psi fiducial region (Fiducial), after correction for J/psi acceptance (Inclusive), and after subtraction of the double parton scattering component (DPS-subtracted). The first uncertainty is statistical, the second is systematic, and the third/fourth (where applicable) is the uncertainty up/down due to spin-alignment.

The inclusive (SPS+DPS) cross-section ratio (times 10^6) as a function of J/psi transverse momentum, along with the estimate of the DPS contribution. For the inclusive result, the first uncertainty is statistical, second uncertainty is systematic, and the third uncertainty is the possible variation due to spin-alignment.


A search for resonant and non-resonant Higgs boson pair production in the ${b\bar{b}\tau^+\tau^-}$ decay channel in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 191801, 2018.
Inspire Record 1684645 DOI 10.17182/hepdata.83539

A search for resonant and non-resonant pair production of Higgs bosons in the $b\bar{b}\tau^+\tau^-$ final state is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data with $\sqrt{s}= 13$ TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. The semileptonic and fully hadronic decays of the $\tau$-lepton pair are considered. No significant excess above the expected background is observed in the data. The cross-section times branching ratio for non-resonant Higgs boson pair production is constrained to be less than 30.9 fb, 12.7 times the Standard Model expectation, at 95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production, constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times branching ratio, excluding resonances $X$ in the mass range $305~{\rm GeV} < m_X < 402~{\rm GeV}$ in the simplified hMSSM minimal supersymmetric model for $\tan\beta=2$ and excluding bulk Randall-Sundrum gravitons $G_{\mathrm{KK}}$ in the mass range $325~{\rm GeV} < m_{G_{\mathrm{KK}}} < 885~{\rm GeV}$ for $k/\overline{M}_{\mathrm{Pl}} = 1$.

6 data tables match query

Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 1 process

Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 2 process

Observed and expected limits at 95% CL on the cross-sections of hMSSM scalar X to HH process

More…

Search for metastable heavy charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 407, 2015.
Inspire Record 1376482 DOI 10.17182/hepdata.68640

Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.

80 data tables match query

Ratio of the reconstructed mass, computed as the most probable value of a fit to a Landau distribution convolved with a Gaussian, to the generated mass, as a function of the generated mass for stable gluino R-hadrons, along with the half-width at half maximum of the reconstructed mass distribution normalised to the generated mass.

Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable R-hadron mass.

Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.

More…

Test of lepton universality with $B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$ decays

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 08 (2017) 055, 2017.
Inspire Record 1599846 DOI 10.17182/hepdata.77815

A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*0}e^{+}e^{-}$ decays, $R_{K^{*0}}$, is presented. The $K^{*0}$ meson is reconstructed in the final state $K^{+}\pi^{-}$, which is required to have an invariant mass within 100$\mathrm{\,MeV}c^2$ of the known $K^{*}(892)^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3$\mathrm{\,fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8$\mathrm{\,TeV}$. The ratio is measured in two regions of the dilepton invariant mass squared, $q^{2}$, to be \begin{eqnarray*} R_{K^{*0}} = \begin{cases} 0.66~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.03\mathrm{\,(syst)} & \textrm{for } 0.045 < q^{2} < 1.1~\mathrm{\,GeV^2}c^4 \, , \\ 0.69~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.05\mathrm{\,(syst)} & \textrm{for } 1.1\phantom{00} < q^{2} < 6.0~\mathrm{\,GeV^2}c^4 \, . \end{cases} \end{eqnarray*} The corresponding 95.4\% confidence level intervals are $[0.52, 0.89]$ and $[0.53, 0.94]$. The results, which represent the most precise measurements of $R_{K^{*0}}$ to date, are compatible with the Standard Model expectations at the level of 2.1--2.3 and 2.4--2.5 standard deviations in the two $q^{2}$ regions, respectively.

2 data tables match query

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the low-q2 bin ($0.045 < q^2 < 1.1$ GeV$^{2}/c^4$).

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the central-q2 bin ($1.1 < q^2 < 6.0$ GeV$^{2}/c^4$).


Measurements of the S-wave fraction in $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$ decays and the $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ differential branching fraction

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 11 (2016) 047, 2016.
Inspire Record 1469448 DOI 10.17182/hepdata.82576

A measurement of the differential branching fraction of the decay ${B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}}$ is presented together with a determination of the S-wave fraction of the $K^+\pi^-$ system in the decay $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$. The analysis is based on $pp$-collision data corresponding to an integrated luminosity of 3\,fb$^{-1}$ collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, $q^2$. Precise theoretical predictions for the differential branching fraction of $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ decays are available for the $q^2$ region $1.1<q^2<6.0\,{\rm GeV}^2/c^4$. In this $q^2$ region, for the $K^+\pi^-$ invariant mass range $796 < m_{K\pi} < 996\,{\rm MeV}/c^2$, the S-wave fraction of the $K^+\pi^-$ system in $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$ decays is found to be \begin{equation*} F_{\rm S} = 0.101\pm0.017({\rm stat})\pm0.009 ({\rm syst}), \end{equation*} and the differential branching fraction of $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ decays is determined to be \begin{equation*} {\rm d}\mathcal{B}/{\rm d} q^2 = (0.342_{\,-0.017}^{\,+0.017}({\rm stat})\pm{0.009}({\rm syst})\pm0.023({\rm norm}))\times 10^{-7}c^{4}/{\rm GeV}^{2}. \end{equation*} The differential branching fraction measurements presented are the most precise to date and are found to be in agreement with Standard Model predictions.

1 data table match query

Differential branching fraction of $B^0 \to K^*(892)^0 \mu^+ \mu^-$ decays in bins of $q^2$. The first uncertainty is statistical, the second systematic and the third due to the uncertainty on the $B^0 \to J/\psi K^{*0}$ and $J/\psi \to \mu^+ \mu^-$ branching fractions.


Search for resonances in the mass distribution of jet pairs with one or two jets identified as $b$-jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032016, 2018.
Inspire Record 1674532 DOI 10.17182/hepdata.83179

A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

26 data tables match query

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.

Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

17 data tables match query

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Identified hadron spectra at large transverse momentum in p + p and d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 637 (2006) 161-169, 2006.
Inspire Record 709170 DOI 10.17182/hepdata.85695

We present the transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions at \sqrts_NN = 200 GeV. The spectra are measured around midrapidity (|y| &lt; 0.5) over the range of 0.3 &lt; pT &lt; 10 GeV/c with particle identification from the ionization energy loss and its relativistic rise in the Time Projection Chamber and Time-of-Flight in STAR. The charged pion and proton+anti-proton spectra at high pT in p+p and d+Au collisions are in good agreement with a phenomenological model (EPOS) and with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p+p collisions follow xT-scalings for the momentum range where particle production is dominated by hard processes (pT > 2 GeV/c). The nuclear modification factor around midrapidity are found to be greater than unity for charged pions and to be even larger for protons at 2 &lt; pT &lt; 5 GeV/c.

26 data tables match query

Transverse momentum distribution for $\pi^+$ production in d+Au minbias events in the mid rapidity region, $|y|<0.5$.

Transverse momentum distribution for $\pi^+$ production in p+p NSD events in the mid rapidity region, $|y|<0.5$.

Transverse momentum distribution for $\pi^+$ production in d+Au collisions with centrality 0-20% in the mid rapidity region, $|y|<0.5$.

More…

Strange particle production in p + p collisions at s**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Adams, J. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 75 (2007) 064901, 2007.
Inspire Record 722757 DOI 10.17182/hepdata.96848

We present strange particle spectra and yields measured at mid-rapidity in $\sqrt{\text{s}}=200$ GeV proton-proton ($p+p$) collisions at RHIC. We find that the previously observed universal transverse mass ($\mathrm{m_{T}}\equiv\sqrt{\mathrm{p_{T}}^{2}+\mathrm{m}^{2}}$) scaling of hadron production in $p+p$ collisions seems to break down at higher \mt and that there is a difference in the shape of the \mt spectrum between baryons and mesons. We observe mid-rapidity anti-baryon to baryon ratios near unity for $\Lambda$ and $\Xi$ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum (\mpt) on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared to previous measurements from CERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next to Leading order (NLO) string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from $p+p$ collisions at RHIC energies have large contributions from gluon jets rather than quark jets.

14 data tables match query

Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.

Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.

Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.

More…

Measurements of transverse energy distributions in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 054907, 2004.
Inspire Record 653797 DOI 10.17182/hepdata.98621

Transverse energy ($E_T$) distributions have been measured for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV by the STAR collaboration at RHIC. $E_T$ is constructed from its hadronic and electromagnetic components, which have been measured separately. $E_T$ production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of $E_T$ per charged particle agrees well with measurements at lower collision energy, indicating that the growth in $E_T$ for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total $E_T$ is consistent with a final state dominated by mesons and independent of centrality.

16 data tables match query

Typical MIP spectrum. The hits correspond to isolated tracks with p > 1.25 GeV/c which project to EMC towers. The peak corresponds to the energy deposited by non-showering hadrons (MIP peak).

$p/E_{tower}$ spectrum for electron candidates, selected through $dE/dx$ from the TPC, with 1.5 < p < 5.0 GeV/c. A well defined electron peak is observed. The dashed line corresponds to the hadronic background in the $dE/dx$-identified electron sample.

Upper plot: points are measured $p/E_{tower}$ electron peak position as a function of the distance to the center of the tower. The solid line is from a calculation based on a full GEANT simulation of the detector response to electrons. Lower plot: points show measured energy deposited by electrons in the tower as a function of the momentum for distances to the center of the tower smaller than 2.0 cm. The first point is the electron equivalent energy of the minimum ionizing particles. The solid line is a second order polynomial fit of the data.

More…