$^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 360-372, 2016.
Inspire Record 1380234 DOI 10.17182/hepdata.70861

The production of the hypertriton nuclei $^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ has been measured for the first time in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE experiment at LHC energies. The total yield, d$N$/d$y$ $\times \mathrm{B.R.}_{\left( ^{3}_{\Lambda}\mathrm H \rightarrow ^{3}\mathrm{He},\pi^{-} \right)} = \left( 3.86 \pm 0.77 (\mathrm{stat.}) \pm 0.68 (\mathrm{syst.})\right) \times 10^{-5}$ in the 0-10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter $B_3$ shows a dependence on the transverse momentum, similar to the $B_2$ of deuterons and the $B_3$ of $^{3}\mathrm{He}$ nuclei. The ratio of yields $S_3$ = $^{3}_{\Lambda}\mathrm H$/($^{3}\mathrm{He}$ $\times \Lambda/\mathrm{p}$) was measured to be $S_3$ = 0.60 $\pm$ 0.13 (stat.) $\pm$ 0.21 (syst.) in 0-10% centrality events; this value is compared to different theoretical models. The measured $S_3$ is fully compatible with thermal model predictions. The measured $^{3}_{\Lambda}\mathrm H$ lifetime, $ \tau = 181^{+54}_{-39} (\mathrm{stat.}) \pm 33 (\mathrm{syst.})\ \mathrm{ps}$ is compatible within 1$\sigma$ with the world average value.

0 data tables match query

Production of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in proton-proton collisions at $\sqrt{s}=$ 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 75 (2015) 1, 2015.
Inspire Record 1300380 DOI 10.17182/hepdata.66563

The production of the strange and double-strange baryon resonances ($\Sigma(1385)^{\pm}$, $\Xi(1530)^{0}$) has been measured at mid-rapidity ($\left | y \right |<0.5$) in proton-proton collisions at $\sqrt{s}$ = 7 TeV with the ALICE detector at the LHC. Transverse momentum spectra for inelastic collisions are compared to QCD-inspired models, which in general underpredict the data. A search for the $\phi(1860)$ pentaquark, decaying in the $\Xi\pi$ channel, has been carried out but no evidence is seen.

0 data tables match query

Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Aamodt, Kenneth ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 106 (2011) 032301, 2011.
Inspire Record 880049 DOI 10.17182/hepdata.57047

The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

0 data tables match query

Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222302, 2016.
Inspire Record 1410589 DOI 10.17182/hepdata.73052

The pseudorapidity density of charged particles ($\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$) at mid-rapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV. It increases with centrality and reaches a value of $1943 \pm 54$ in $|\eta|<0.5$ for the 5% most central collisions. A rise in $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of $\sqrt{s_{\rm NN}}$ for the most central collisions is observed, steeper than that observed in proton-proton collisions and following the trend established by measurements at lower energy. The centrality dependence of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of the average number of participant nucleons, ${\langle N_\mathrm{part} \rangle}$, calculated in a Glauber model, is compared with the previous measurement at lower energy. A constant factor of about 1.2 describes the increase in $\frac{2}{\langle N_\mathrm{part} \rangle}\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ from $\sqrt{s_{\rm NN}}$ = 2.76 TeV to $\sqrt{s_{\rm NN}}$ = 5.02 TeV for all centrality intervals, within the measured range of 0-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions.

0 data tables match query

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collision data

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 87 (2013) 012008, 2013.
Inspire Record 1125961 DOI 10.17182/hepdata.59904

A search for squarks and gluinos in final states containing jets, missing transverse momentum and no high-pT electrons or muons is presented. The data represent the complete sample recorded in 2011 by the ATLAS experiment in 7 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 4.7 fb^-1. No excess above the Standard Model background expectation is observed. Gluino masses below 860 GeV and squark masses below 1320 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino, for squark or gluino masses below 2 TeV, respectively. Squarks and gluinos with equal masses below 1410 GeV are excluded. In MSUGRA/CMSSM models with tan beta = 10, A_0 = 0 and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1360 GeV. Constraints are also placed on the parameter space of SUSY models with compressed spectra. These limits considerably extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.

0 data tables match query

Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 710 (2012) 363-382, 2012.
Inspire Record 925723 DOI 10.17182/hepdata.57910

The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over |eta| < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of sqrt(s_NN) = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point 'tracklets' and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < |eta| < 4.9. Measurements are presented of the per-event charged particle density distribution, dN_ch/deta, and the average charged particle multiplicity in the pseudorapidity interval |eta|<0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower sqrt(s_NN) results. The shape of the dN_ch/deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement.

0 data tables match query

Charged-particle multiplicity measurement with Reconstructed Tracks in pp Collisions at $\sqrt{s}$ = 0.9 and 7 TeV with ALICE at the LHC

The ALICE collaboration
ALICE-PUBLIC-2013-001, 2013.
Inspire Record 1387699 DOI 10.17182/hepdata.62030

This note describes the details of the analysis of charged-particle pseudorapidity densities and multiplicity distributions measured by the ALICE detector in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV in specific phase space regions. The primary goal of the analysis is to provide reference measurements for Monte Carlo tuning. The pseudorapidity range |h| < 0.8 is considered and a lower $p_T$ cut is applied, at 0.15, 0.5 GeV/c and at 1 GeV/c. The choice of such phase space regions to measure the charged-particle multiplicity allows a direct comparison with the analogous results obtained by other LHC collaborations, namely ATLAS and CMS. The class of events considered are those having at least one charged particle in the kinematical ranges just described. In the note, the analysis procedure is presented, together with the corrections applied to the data, and the systematic uncertainty evaluation. The comparison of the results with different Monte Carlo generators is also shown.

0 data tables match query

Version 2
Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p--Pb Collisions at sqrt(s_NN) = 5.02 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 728 (2014) 25-38, 2014.
Inspire Record 1244523 DOI 10.17182/hepdata.61786

In this Letter, comprehensive results on ${\rm\pi}^\pm$, K$^\pm$, K$^0_S$, p, $\rm\bar{p}$, $\rm \Lambda$ and $\rm \bar{\Lambda}$ production at mid-rapidity ($0 < y_{\rm cms} < 0.5$) in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, measured by the ALICE detector at the LHC, are reported. The transverse momentum distributions exhibit a hardening as a function of event multiplicity, which is stronger for heavier particles. This behavior is similar to what has been observed in pp and Pb-Pb collisions at the LHC. The measured $p_{\rm T}$ distributions are compared to results at lower energy and with predictions based on QCD-inspired and hydrodynamic models.

0 data tables match query

Pion, Kaon, and Proton Production in Central Pb--Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 252301, 2012.
Inspire Record 1126966 DOI 10.17182/hepdata.59720

In this Letter we report the first results on $\pi^\pm$, K$^\pm$, p and $\mathrm {p\overline{p}}$ production at mid-rapidity ($\left|y\right|<0.5$) in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured by the ALICE experiment at the LHC. The $p_{\rm T}$ distributions and yields are compared to previous results at $\sqrt{s_{\rm NN}}$ = 200 GeV and expectations from hydrodynamic and thermal models. The spectral shapes indicate a strong increase of the radial flow velocity with $\sqrt{s_{\rm NN}}$, which in hydrodynamic models is expected as a consequence of the increasing particle density. While the ${\rm K}/\pi$ ratio is in line with predictions from the thermal model, the ${\rm p}/\pi$ ratio is found to be lower by a factor of about 1.5. This deviation from thermal model expectations is still to be understood.

0 data tables match query

Search for Monotop Signatures in Proton-Proton Collisions at $\sqrt s =$ 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 101801, 2015.
Inspire Record 1320560 DOI 10.17182/hepdata.66092

Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7 inverse femtobarns of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thus substantially extending a previous limit published by the CDF Collaboration.

0 data tables match query