Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

57 data tables

F2 measurements for a Q**2 of 0.175 GeV**2.

F2 measurements for a Q**2 of 0.225 GeV**2.

F2 measurements for a Q**2 of 0.275 GeV**2.

More…

Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Soft Electron b-Tagging

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 81 (2010) 092002, 2010.
Inspire Record 846167 DOI 10.17182/hepdata.56640

We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in $p\bar{p}$ Collisions at $\sqrt{s}$ = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 82 (2010) 052002, 2010.
Inspire Record 845783 DOI 10.17182/hepdata.56641

A measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 $fb^{-1}$ is: $\sigma_{t\bar{t}}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the Top Quark Mass and ppbar -> ttbar Cross Section in the All-Hadronic Mode with the CDFII Detector

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 81 (2010) 052011, 2010.
Inspire Record 844530 DOI 10.17182/hepdata.56660

We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.

1 data table

Measured cross section for a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of direct photon pair production cross sections in ppbar collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 690 (2010) 108-117, 2010.
Inspire Record 846997 DOI 10.17182/hepdata.54534

We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.

13 data tables

Single differential cross section DSIG/DM.

Single differential cross section DSIG/DPT.

Single differential cross section DSIG/DPHI.

More…

Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 02 (2010) 041, 2010.
Inspire Record 845323 DOI 10.17182/hepdata.54829

Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

8 data tables

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 900 GeV.

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 900 GeV.

Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 900 GeV.

More…

Measurement of the dijet invariant mass cross section in proton anti-proton collisions at sqrt{s} = 1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 693 (2010) 531-538, 2010.
Inspire Record 846483 DOI 10.17182/hepdata.54666

The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1} integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data.

6 data tables

Dijet double differential cross section for the absolute rapidity region 0.0 to 0.4.

Dijet double differential cross section for the absolute rapidity region 0.4 to 0.8.

Dijet double differential cross section for the absolute rapidity region 0.8 to 1.2.

More…

Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 690 (2010) 239-244, 2010.
Inspire Record 844983 DOI 10.17182/hepdata.97118

We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.

48 data tables

Balance functions in pseudorapidity windows -0.6 < eta < 0 for 0.15 < pT < 2 GEV/c.

Balance functions in pseudorapidity windows 0 < eta < 1 for 0.15 < pT < 2 GEV/c.

Balance functions in pseudorapidity windows -1 < eta < 0.6 for 0.15 < pT < 2 GEV/c.

More…

Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

16 data tables

Average away-side $I^{head}_{AA}$ above 2 GeV/$c$ for various $\pi^0$ trigger momenta in central and midcentral collisions where $|\Delta\phi - \pi| < \pi/6$. Note: a 6% scale uncertainty applies to all $I_{AA}$ values.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in $p+p$ collisions.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in Au+Au collisions.

More…

Jet Production in ep Collisions at Low Q^2 and Determination of alpha_s

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Eur.Phys.J.C 67 (2010) 1-24, 2010.
Inspire Record 838435 DOI 10.17182/hepdata.31170

The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5<Q^2<100 GeV^2 and at inelasticity 0.2<y<0.7 using data recorded by the H1 detector at HERA in the years 1999 and 2000, corresponding to an integrated luminosity of 43.5 pb^-1. Inclusive jet, 2-jet and 3-jet cross sections as well as the ratio of 3-jet to 2-jet cross sections are measured as a function of Q^2 and jet transverse momentum. The 2-jet cross section is also measured as a function of the proton momentum fraction xi. The measurements are well described by perturbative quantum chromodynamics at next-to-leading order corrected for hadronisation effects and are subsequently used to extract the strong coupling alpha_s.

13 data tables

Inclusive Jet Cross Section ${\rm\frac{d\sigma_{jet}}{dQ^2}}$.

2-Jet Cross Section ${\rm\frac{d\sigma_{2-jet}}{dQ^2}}$.

3-Jet Cross Section ${\rm\frac{d\sigma_{3-jet}}{dQ^2}}$.

More…