A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.
The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.
We present cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3095 MeV. The ψ(3095) resonance is established as having an assignment JPC=1−−. The mass is 3095 ±4 MeV. The partial width to electrons is Γe=4.8±0.6 keV and the total width Γ=69±15 keV. Total rates and interference measurements for the lepton channels are in accord with μ−e universality.
A direct search for Higgs bosons produced via vector-boson fusion and subsequently decaying into invisible particles is reported. The analysis uses 139 $\text{fb}^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$=13 $\text{TeV}$ recorded by the ATLAS detector at the LHC. The observed numbers of events are found to be in agreement with the background expectation from Standard Model processes. For a scalar Higgs boson with a mass of 125 $\text{GeV}$ and a Standard Model production cross section, an observed upper limit of $0.145$ is placed on the branching fraction of its decay into invisible particles at 95% confidence level, with an expected limit of $0.103$. These results are interpreted in the context of models where the Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross section of weakly interacting massive particles and nucleons. Invisible decays of additional scalar bosons with masses from 50 $\text{GeV}$ to 2 $\text{TeV}$ are also studied, and the derived upper limits on the cross section times branching fraction decrease with increasing mass from 1.0 $\text{pb}$ for a scalar boson mass of 50 $\text{GeV}$ to 0.1 $\text{pb}$ at a mass of 2 $\text{TeV}$.
The inclusive jet cross section is measured as a function of jet transverse momentum $p_\mathrm{T}$ and rapidity $y$. The measurement is performed using proton-proton collision data at $\sqrt{s}$ = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb$^{-1}$. The jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm using a distance parameter of $R$ = 0.4, within the rapidity interval $\lvert y\rvert$$\lt$ 2, and across the kinematic range 0.06 $\lt$$p_\mathrm{T}$$\lt$ 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization / factorization scales and the strong coupling $\alpha_\mathrm{S}$.
We have observed a second sharp peak in the cross section for e+e−→hadrons at a center-of-mass energy of 3.695±0.004 GeV. The upper limit of the full width at half-maximum is 2.7 MeV.
A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.
An analysis of the decay $\Lambda_b \to J/\psi(\to\mu^+\mu^-)\Lambda(\to p \pi^-)$ decay is performed to measure the $\Lambda_b$ polarization and three angular parameters in data from pp collisions at $\sqrt{s} =$ 7 and 8 TeV, collected by the CMS experiment at the LHC. The $\Lambda_b$ polarization is measured to be 0.00 $\pm$ 0.06 (stat) $\pm$ 0.06 (syst) and the parity-violating asymmetry parameter is determined to be 0.14 $\pm$ 0.14 (stat) $\pm$ 0.10 (syst). The measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.
Measurements of the polarization and spin correlation in top quark pairs ($\mathrm{t\bar{t}}$) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the $\mathrm{t\bar{t}}$ system and the top quark scattering angle in the $\mathrm{t\bar{t}}$ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the $\mathrm{t\bar{t}}$ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for $\mathrm{t\bar{t}}$ states at the production threshold and at high masses of the $\mathrm{t\bar{t}}$ system. Entanglement is observed for the first time in events at high $\mathrm{t\bar{t}}$ mass, where a large fraction of the $\mathrm{t\bar{t}}$ decays are space-like separated, with an expected and observed significance of above 5 standard deviations.
An inclusive search for the standard model Higgs boson ($\mathrm{H}$) produced with large transverse momentum ($p_\mathrm{T}$) and decaying to a bottom quark-antiquark pair ($\mathrm{b}\overline{\mathrm{b}}$) is performed using a data set of pp collisions at $\sqrt{s}=$ 13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $\mathrm{b}\overline{\mathrm{b}}$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated $\mathrm{b}$ tagging techniques. The method is validated with $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ decays. The $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}}$ with $p_\mathrm{T} > $450 GeV and in the pseudorapidity range $-$2.5 $< \eta <$ 2.5 is 74 $\pm$ 48 (stat) $_{-10}^{+17}$ (syst) fb, which is consistent within uncertainties with the standard model prediction.