A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 22 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Aopt: Alignment uncertainty from the optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 1.5%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) Small differences in the values given here compared to the published version are related to insignificant rounding issues.
A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.
A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).
The production of $W^{\pm}Z$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb$^{-1}$. The $W^{\pm}Z$ candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.2 \pm 3.2$ (stat.) $\pm 2.6$ (sys.) $\pm 1.5$ (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is $53.4^{+3.6}_{-2.8}$ fb. The extrapolation of the measurement from the fiducial to the total phase space yields $\sigma_{W^{\pm}Z}^{\textrm{tot.}} = 50.6 \pm 2.6$ (stat.) $\pm 2.0$ (sys.) $\pm 0.9$ (th.) $\pm 1.2$ (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of $48.2^{+1.1}_{-1.0}$ pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent $W^+Z$ and $W^-Z$ cross sections and their ratio.
The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.
The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.
The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.
The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.
Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with non-universal Higgs boson masses.
<b>Kinematics 1</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 2</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 3</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
A search for new phenomena in events with two same-charge leptons or three leptons and jets identified as originating from $b$-quarks in a data sample of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}= 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider is reported. No significant excess is found and limits are set on vector-like quark, four-top-quark, and same-sign top-quark pair production. The observed (expected) 95% CL mass limits for a vector-like $T$- and $B$-quark singlet are $m_T > 0.98$ $(0.99)$ TeV and $m_B > 1.00$ $(1.01)$ TeV respectively. Limits on the production of the vector-like $T_{5/3}$-quark are also derived considering both pair and single production; in the former case the lower limit on the mass of the $T_{5/3}$-quark is (expected to be) 1.19 (1.21) TeV. The Standard Model four-top-quark production cross-section upper limit is (expected to be) 69 (29) fb. Constraints are also set on exotic four-top-quark production models. Finally, limits are set on same-sign top-quark pair production. The upper limit on $uu \to tt$ production is (expected to be) 89 (59) fb for a mediator mass of 1 TeV, and a dark-matter interpretation is also derived, excluding a mediator of 3 TeV with a dark-sector coupling of 1.0 and a coupling to ordinary matter above 0.31.
Expected and observed limits on vector-like B-quark pair production as a function of mass, assuming the branching ratios expected in the singlet model.
Expected and observed limits on vector-like T-quark pair production as a function of mass, assuming the branching ratios expected in the singlet model.
Expected and observed limits on vector-like T5/3 pair production as a function of mass, assuming a branching ratio B(T5/3 -> Wt) = 100%.
The modification of the production of $J/\psi$, $\psi(\mathrm{2S})$, and $\mit{\Upsilon}(n\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\mathrm{nb}^{-1}$ and $25$ $\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\psi$ and $\psi(\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\mathrm{Pb}}$ for $J/\psi$ and $\mit{\Upsilon}(\mathrm{1S})$. No significant modification of the $J/\psi$ production is observed while $\mit{\Upsilon}(\mathrm{1S})$ production is found to be suppressed at low transverse momentum in $p$+Pb collisions relative to $pp$ collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central $p$+Pb collisions.
Summary of results for prompt Psi(2S) to J/psi double ratio in p+Pb collisions at 5.02 TeV as a function of center-of-mass rapidity. Uncertainties are statistical and systematic, respectively.