Measurement of the $W^{\pm}Z$ boson pair-production cross section in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 762 (2016) 1-22, 2016.
Inspire Record 1469071 DOI 10.17182/hepdata.76493

The production of $W^{\pm}Z$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb$^{-1}$. The $W^{\pm}Z$ candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.2 \pm 3.2$ (stat.) $\pm 2.6$ (sys.) $\pm 1.5$ (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is $53.4^{+3.6}_{-2.8}$ fb. The extrapolation of the measurement from the fiducial to the total phase space yields $\sigma_{W^{\pm}Z}^{\textrm{tot.}} = 50.6 \pm 2.6$ (stat.) $\pm 2.0$ (sys.) $\pm 0.9$ (th.) $\pm 1.2$ (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of $48.2^{+1.1}_{-1.0}$ pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent $W^+Z$ and $W^-Z$ cross sections and their ratio.

11 data tables match query

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum with ATLAS using $\sqrt{s} =13$ TeV proton--proton collisions

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 757 (2016) 334-355, 2016.
Inspire Record 1422615 DOI 10.17182/hepdata.71987

Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.

1 data table match query

$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.


Search for bottom squark pair production in proton--proton collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 547, 2016.
Inspire Record 1472822 DOI 10.17182/hepdata.74005

The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.

1 data table match query

Observed CLs values in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the best expected signal region.


Measurement of $W^{\pm}$ and $Z$-boson production cross sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 759 (2016) 601-621, 2016.
Inspire Record 1436497 DOI 10.17182/hepdata.73611

Measurements of the $W^{\pm} \rightarrow \ell^{\pm} \nu$ and $Z \rightarrow \ell^+ \ell^-$ production cross sections (where $\ell^{\pm}=e^{\pm},\mu^{\pm}$) in proton-proton collisions at $\sqrt{s}=13$ TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb$^{-1}$ The total inclusive $W^{\pm}$-boson production cross sections times the single-lepton-flavour branching ratios are $\sigma_{W^+}^{tot}= 11.83 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.25 (lumi)$ nb and $\sigma_{W^-}^{tot} = 8.79 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.18 (lumi)$ nb for $W^+$ and $W^-$, respectively. The total inclusive $Z$-boson production cross section times leptonic branching ratio, within the invariant mass window $66 < m_{\ell\ell} < 116$ GeV, is $\sigma_{Z}^{tot} = 1.981 \pm 0.007 (stat) \pm 0.038 (sys) \pm 0.042 (lumi)$ nb. The $W^+$, $W^-$, and $Z$-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in $\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys)$ and $\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys)$. Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and to next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements.

1 data table match query

Measured fiducial cross-section ratio R_{W+-/Z} = sigma (W+/- -> l+/- nu/nubar) / sigma (Z/gamma^* -> l+ l-) where (l = e, mu).


Measurement of the $t\bar{t}t\bar{t}$ production cross section in $pp$ collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 118, 2021.
Inspire Record 1869695 DOI 10.17182/hepdata.105039

A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.

1 data table match query

Comparison between data and prediction for the distribution of b-jets multiplicity in the 2LOS,$\geq$6j,$\geq$3b region after the fit.


Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

3 data tables match query

The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> &gt;100&nbsp;MeV at &radic;s=13&nbsp;TeV in the multiplicity interval 71 &le; n<sub>ch</sub> &lt; 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.

The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> &gt;100&nbsp;MeV at &radic;s=13&nbsp;TeV in the multiplicity interval 231 &le; n<sub>ch</sub> &lt; 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.

The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals&#8758; (a) 91 &lt; n<sub>ch</sub> &le; 100, (b) 101 &lt; n<sub>ch</sub> &le; 125, (c) 126 &lt; n<sub>ch</sub> &le; 150, (d) 151 &lt; n<sub>ch</sub> &le; 200, (e) 201 &lt; n<sub>ch</sub> &le; 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.


Version 3
Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2018) 050, 2018.
Inspire Record 1672099 DOI 10.17182/hepdata.83011

A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}

3 data tables match query

SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.

SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.

SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.


Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

4 data tables match query

Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.

Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.

Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.

More…

Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 052009, 2016.
Inspire Record 1469069 DOI 10.17182/hepdata.74125

The results of a search for the stop, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC $pp$ collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb${}^{-1}$. The analysis targets two types of signal models: gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino; and direct pair production of stops, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and stop masses are set at 95% confidence level. The results extend the LHC Run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low stop mass region, and add an excluded stop mass region from 745 to 780 GeV for the direct stop model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vector-like top quarks.

1 data table match query

Distribution of $m_\text{T2}^\tau$ in data for a selection enriched in $t\bar{t}$ events with one hadronically decaying $\tau$. Events that have no hadronic $\tau$ candidate (that passes the Loose identification criteria, as well as other requirements) are not shown in the plot.


Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 136-157, 2016.
Inspire Record 1468168 DOI 10.17182/hepdata.73120

This paper describes a measurement of the inclusive top quark pair production cross-section ($\sigma_{t\bar{t}}$) with a data sample of 3.2 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron--muon pair in the final state. Jets containing $b$-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two $b$-tagged jets are counted and used to determine simultaneously $\sigma_{t\bar{t}}$ and the efficiency to reconstruct and $b$-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: $\sigma_{t\bar{t}}$= 818 $\pm$ 8 (stat) $\pm$ 27 (syst) $\pm$ 19 (lumi) $\pm$ 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.

1 data table match query

Measured cross-section for $t\bar{t}$ events using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV.