Measurements of top-quark pair differential and double-differential cross-sections in the $\ell$+jets channel with $pp$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1028, 2019.
Inspire Record 1750330 DOI 10.17182/hepdata.95758

Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.

0 data tables match query

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

0 data tables match query

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

0 data tables match query

Measurements of four-lepton production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 753 (2016) 552-572, 2016.
Inspire Record 1394865 DOI 10.17182/hepdata.18593

The four-lepton ($4\ell$, $\ell = e, \mu$) production cross section is measured in the mass range from 80 to 1000 GeV using 20.3 fb$^{-1}$ of data in $pp$ collisions at $\sqrt{s}=8$ TeV collected with the ATLAS detector at the LHC. The $4\ell$ events are produced in the decays of resonant $Z$ and Higgs bosons and the non-resonant $ZZ$ continuum originating from $q\bar q$, $gg$, and $qg$ initial states. A total of 476 signal candidate events are observed with a background expectation of $26.2 \pm 3.6$ events, enabling the measurement of the integrated cross section and the differential cross section as a function of the invariant mass and transverse momentum of the four-lepton system. In the mass range above $180$ GeV, assuming the theoretical constraint on the $q\bar q$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component relative to its leading-order prediction is determined to be $\mu_{gg}=2.4 \pm 1.0 (stat.) \pm 0.5 (syst.)\pm 0.8 (theory)$.

0 data tables match query

Measurement of the $t\bar{t}$ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 020, 2015.
Inspire Record 1304688 DOI 10.17182/hepdata.18665

The $t\bar{t}$ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.

0 data tables match query

Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}$ = 8 TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 032009, 2016.
Inspire Record 1397637 DOI 10.17182/hepdata.18108

The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for $t\bar{t}$ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-$k_t$ jet with radius parameter $R=1.0$ and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

0 data tables match query

Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 74 (2014) 2965, 2014.
Inspire Record 1298811 DOI 10.17182/hepdata.65229

Distributions sensitive to the underlying event in QCD jet events have been measured with the ATLAS detector at the LHC, based on 37/pb of proton-proton collision data collected at a centre-of-mass energy of 7 TeV. Charged-particle mean $p_T$ and densities of all-particle $E_T$ and charged-particle multiplicity and $p_T$ have been measured in regions azimuthally transverse to the hardest jet in each event. These are presented both as one-dimensional distributions and with their mean values as functions of the leading-jet transverse momentum from 20 GeV to 800 GeV. The correlation of charged-particle mean $p_T$ with charged-particle multiplicity is also studied, and the $E_T$ densities include the forward rapidity region; these features provide extra data constraints for Monte Carlo modelling of colour reconnection and beam-remnant effects respectively. For the first time, underlying event observables have been computed separately for inclusive jet and exclusive dijet event selections, allowing more detailed study of the interplay of multiple partonic scattering and QCD radiation contributions to the underlying event. Comparisons to the predictions of different Monte Carlo models show a need for further model tuning, but the standard approach is found to generally reproduce the features of the underlying event in both types of event selection.

0 data tables match query

Search for new phenomena in events with three or more charged leptons in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2015) 138, 2015.
Inspire Record 1327229 DOI 10.17182/hepdata.66248

A generic search for anomalous production of events with at least three charged leptons is presented. The data sample consists of $pp$ collisions at $\sqrt{s}=8$ TeV collected in 2012 by the ATLAS experiment at the CERN Large Hadron Collider, and corresponds to an integrated luminosity of 20.3 fb$^{-1}$. Events are required to have at least three selected lepton candidates, at least two of which must be electrons or muons, while the third may be a hadronically decaying tau. Selected events are categorized based on their lepton flavour content and signal regions are constructed using several kinematic variables of interest. No significant deviations from Standard Model predictions are observed. Model-independent upper limits on contributions from beyond the Standard Model phenomena are provided for each signal region, along with prescription to re-interpret the limits for any model. Constraints are also placed on models predicting doubly charged Higgs bosons and excited leptons. For doubly charged Higgs bosons decaying to $e\tau$ or $\mu\tau$, lower limits on the mass are set at 400 GeV at 95% confidence level. For excited leptons, constraints are provided as functions of both the mass of the excited state and the compositeness scale $\Lambda$, with the strongest mass constraints arising in regions where the mass equals $\Lambda$. In such scenarios, lower mass limits are set at 3.0 TeV for excited electrons and muons, 2.5 TeV for excited taus, and 1.6 TeV for every excited-neutrino flavour.

0 data tables match query

Measurement of hard double-parton interactions in $W(\to l\nu)$+ 2 jet events at $\sqrt{s}$=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
New J.Phys. 15 (2013) 033038, 2013.
Inspire Record 1216670 DOI 10.17182/hepdata.63897

The production of W bosons in association with two jets in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36/pb, collected with the ATLAS detector at the LHC. The fraction of events arising from double-parton interactions, $f_{DP}^{(D)}$ has been measured through the momentum balance between the two jets and amounts to $f_{DP}^{(D)} = 0.08 \pm 0.01 (stat.) \pm 0.02 (sys.)$ for jets with transverse momentum PT > 20 GeV and rapidity |y|<2.8. This corresponds to a measurement of the effective area parameter for hard double-parton interactions of $\sigma_{eff} = 15 \pm 3 (stat.)^{+5}_{-3}$ (sys.) mb.

0 data tables match query

Evidence for Electroweak Production of $W^{\pm}W^{\pm}jj$ in $pp$ Collisions at $\sqrt{s}=8$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 113 (2014) 141803, 2014.
Inspire Record 1298023 DOI 10.17182/hepdata.64182

This Letter presents the first study of $W^{\pm}W^{\pm}jj$, same-electric-charge diboson production in association with two jets, using 20.3 fb$^{-1}$ of proton--proton collision data at $\sqrt{s}=8$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two reconstructed same-charge leptons ($e^\pm e^\pm$, $e^\pm \mu^\pm$, and $\mu^\pm \mu^\pm$) and two or more jets are analyzed. Production cross sections are measured in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. First evidence for $W^{\pm}W^{\pm}jj$ production and electroweak-only $W^{\pm}W^{\pm}jj$ production is observed with a significance of $4.5$ and $3.6$ standard deviations respectively. The measured production cross sections are in agreement with Standard Model predictions. Limits at 95% confidence level are set on anomalous quartic gauge couplings.

0 data tables match query