Showing 1 of 1 results
A search is presented for particles that decay producing a large jet multiplicity and invisible particles. The event selection applies a veto on the presence of isolated electrons or muons and additional requirements on the number of b-tagged jets and the scalar sum of masses of large-radius jets. Having explored the full ATLAS 2015-2016 dataset of LHC proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$, which corresponds to 36.1 fb$^{-1}$ of integrated luminosity, no evidence is found for physics beyond the Standard Model. The results are interpreted in the context of simplified models inspired by R-parity-conserving and R-parity-violating supersymmetry, where gluinos are pair-produced. More generic models within the phenomenological minimal supersymmetric Standard Model are also considered.
Post-fit yields for each signal region in the multijets analysis. Summary of all 27 signal regions (post-fit).
Observed 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the pMSSM grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the pMSSM grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the pMSSM grid.
Expected 95% CL limit for the pMSSM grid with an up variation of the uncertainties.
Expected 95% CL limit for the pMSSM grid with a down variation of the uncertainties.
Observed 95% CL limit for the 2Step grid.
Observed 95% CL limit for the 2Step grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the 2Step grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the 2Step grid.
Expected 95% CL limit for the 2Step grid with an up variation of the uncertainties.
Expected 95% CL limit for the 2Step grid with a down variation of the uncertainties.
Observed 95% CL limit for the gtt off-shell grid.
Observed 95% CL limit for the gtt off-shell grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the gtt off-shell grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the gtt off-shell grid.
Expected 95% CL limit for the gtt off-shell grid with an up variation of the uncertainties.
Expected 95% CL limit for the gtt off-shell grid with a down variation of the uncertainties.
Observed 95% CL limit for the RPV grid.
Observed 95% CL limit for the RPV grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the RPV grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the RPV grid.
Expected 95% CL limit for the RPV grid with an up variation of the uncertainties.
Expected 95% CL limit for the RPV grid with a down variation of the uncertainties.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-7j80-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-7j80-1b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-7j80-2b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-8j80-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-8j80-1b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-8j80-2b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-9j80-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-9j80-1b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-9j80-2b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-8j50-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-8j50-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-8j50-1b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-8j50-2b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-9j50-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-9j50-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-9j50-1b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-9j50-2b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-10j50-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-10j50-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-10j50-1b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-10j50-2b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-11j50-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-11j50-1b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-11j50-2b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j50-0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j50-1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j50-2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j50-0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j50-1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j50-2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-10j50-0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-10j50-1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-10j50-2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-11j50-0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-11j50-1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-11j50-2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-7j80-0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-7j80-1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-7j80-2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j80-0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j80-1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j80-2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j80-0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j80-1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j80-2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j50-0b-MJ340. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-8j50-0b-MJ500. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j50-0b-MJ340. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-9j50-0b-MJ500. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-10j50-0b-MJ340. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region SR-10j50-0b-MJ500. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the flavour stream with no b-jet requirement and a minimum transverse momentum of 50 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the flavour stream with one inclusive b-jet required and a minimum transverse momentum of 50 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the flavour stream with two inclusive b-jets required and a minimum transverse momentum of 50 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the flavour stream with no b-jet requirement and a minimum transverse momentum of 80 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the flavour stream with one inclusive b-jet required and a minimum transverse momentum of 80 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the flavour stream with two inclusive b-jets required and a minimum transverse momentum of 80 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the fat-jet stream with MJSigma above 340 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions (prior to the leptonic background fit) for the fat-jet stream with MJSigma above 500 GeV. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the 2Step grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the 2Step grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the 2Step grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the pMSSM grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the pMSSM grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the pMSSM grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the RPV grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the RPV grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the RPV grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the gtt off-shell grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the gtt off-shell grid.
The best-expected signal region and the corresponding best-observed and best-expected CLs values for the gtt off-shell grid.
95% CLs observed upper limit on model cross-section (in fb) for 2Step signal points for the best-expected signal region.
95% CLs observed upper limit on model cross-section (in fb) for RPV signal points for the best-expected signal region.
95% CLs observed upper limit on model cross-section (in fb) for gtt off-shell signal points for the best-expected signal region.
Performance of the SR-8j50-0b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-8j50-0b-MJ340 for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-8j50-0b-MJ500 for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-8j50-1b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-8j50-2b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j50-0b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j50-0b-MJ340 for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j50-0b-MJ500 for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j50-1b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j50-2b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-10j50-0b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-10j50-0b-MJ340 for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-10j50-0b-MJ500 for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-10j50-1b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-10j50-2b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-11j50-0b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-11j50-1b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-11j50-2b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-7j80-0b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-7j80-1b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-7j80-2b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-8j80-0b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-8j80-1b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-8j80-2b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j80-0b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j80-1b for the 2Step grid: fractional acceptance; fractional efficiency.
Performance of the SR-9j80-2b for the 2Step grid: fractional acceptance; fractional efficiency.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.