Showing 1 of 1 results
Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 mb^-1. This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle (phi), with the coefficients v_n denoting the magnitude of the anisotropy. Significant v_2-v_6 values are obtained as a function of transverse momentum (0.5<pT<20 GeV), pseudorapidity (|eta|<2.5) and centrality using an event plane method. The v_n values for n>=3 are found to vary weakly with both eta and centrality, and their pT dependencies are found to follow an approximate scaling relation, v_n^{1/n}(pT) \propto v_2^{1/2}(pT). A Fourier analysis of the charged particle pair distribution in relative azimuthal angle (Dphi=phi_a-phi_b) is performed to extract the coefficients v_{n,n}=<cos (n Dphi)>. For pairs of charged particles with a large pseudorapidity gap (|Deta=eta_a-eta_b|>2) and one particle with pT<3 GeV, the v_{2,2}-v_{6,6} values are found to factorize as v_{n,n}(pT^a,pT^b) ~ v_n(pT^a)v_n(pT^b) in central and mid-central events. Such factorization suggests that these values of v_{2,2}-v_{6,6} are primarily due to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the v_{1,1}(pT^a,pT^b) data are consistent with the combined contributions from a rapidity-even v_1 and global momentum conservation. A two-component fit is used to extract the v_1 contribution. The extracted v_1 is observed to cross zero at pT\sim1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v_3, and decreases at higher pT.
The EP Resolution Factor vs. Centrality for n values from2 to 6.
The Chi Reolution Factor vs. Centrality for n values from 2 to 6.
The one-dimensional Delta(PHI) correlation function vs Delta(PHI) for |DETARAP| in the range 2 to 5 summed over all n values from 1 to 6.
The Fourier coefficient V_n,n vs. |Delta(ETARAP)| for individual n values.
The Fourier coefficient V_n vs. |Delta(ETARAP)| from the 2PC anaysis for individual n values from 2 to n.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 0.5 TO 1 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 1 TO 2 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 2 TO 3 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 3 TO 4 GeV and centrality 60 TO 70%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 0 TO 5%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 5 TO 10%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 10 TO 20%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 20 TO 30%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 30 TO 40%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 40 TO 50%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 50 TO 60%.
The Fourier coefiiciant V_n vs eta for PT 4 TO 8 GeV and centrality 60 TO 70%.
V_n vs PT for centrality 0 TO 5%.
V_n vs PT for centrality 5 TO 10%.
V_n vs PT for centrality 10 TO 20%.
V_n vs PT for centrality 20 TO 30%.
V_n vs PT for centrality 30 TO 40%.
V_n vs PT for centrality 40 TO 50%.
V_n vs PT for centrality 50 TO 60%.
V_n vs PT for centrality 60 TO 70%.
V_n vs Centrality for PT 1 TO 2 GeV.
V_n vs Centrality for PT 2 TO 3 GeV.
V_n vs Centrality for PT 3 TO 4 GeV.
V_n vs Centrality for PT 4 TO 8 GeV.
V_n vs Centrality for PT 8 TO 12 GeV.
V_n vs Centrality for PT 12 TO 20 GeV.
2PC.V_n vs n for Centrality 0 TO 1 %.
2PC.V_n vs n for Centrality 0 TO 5 %.
2PC.V_n vs n for Centrality 5 TO 10 %.
2PC.V_n vs n for Centrality 0 TO 10 %.
2PC.V_n vs n for Centrality 10 TO 20 %.
2PC.V_n vs n for Centrality 20 TO 30 %.
2PC.V_n vs n for Centrality 30 TO 40 %.
2PC.V_n vs n for Centrality 40 TO 50 %.
2PC.V_n vs n for Centrality 50 TO 60 %.
2PC.V_n vs n for Centrality 60 TO 70 %.
2PC.V_n vs n for Centrality 70 TO 80 %.
V_nn vs n for Centrality 0 TO 1 %.
V_nn vs n for Centrality 0 TO 5 %.
V_nn vs n for Centrality 5 TO 10 %.
V_nn vs n for Centrality 0 TO 10 %.
V_nn vs n for Centrality 10 TO 20 %.
V_nn vs n for Centrality 20 TO 30 %.
V_nn vs n for Centrality 30 TO 40 %.
V_nn vs n for Centrality 40 TO 50 %.
V_nn vs n for Centrality 50 TO 60 %.
V_nn vs n for Centrality 60 TO 70 %.
V_nn vs n for Centrality 70 TO 80 %.
correlation funcitons in various pT bins.
correlation funcitons in various pT bins.
correlation funcitons in various pT bins.
correlation funcitons in various pT bins.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1,1} vs eta for different combinations of pTa and pTb. Figure 18.
v_{1} vs pT for different centrality selections, Figure 21.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_n extracted from 2PC method utilizing the factorization relation.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
v_ vs pta for various centrality pta combinations.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.