Date

Collaboration

Measurement of $W^+W^-$ production in association with one jet in proton--proton collisions at $\sqrt{s} =8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 763 (2016) 114-133, 2016.
Inspire Record 1480365 DOI 10.17182/hepdata.79950

The production of $W$ boson pairs in association with one jet in $pp$ collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta|<4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma^{\mathrm{fid,1\textrm{-}jet}}_{WW}=136\pm6($stat$)\pm14($syst$)\pm3($lumi$)$ fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of $WW$ production with zero or one jet is measured to be $\sigma^{\mathrm{fid,}\leq\mathrm{1\textrm{-}jet}}_{WW}=511\pm9($stat$)\pm26($syst$)\pm10($lumi$)$ fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be $0.36\pm0.05$. Finally, a total cross section extrapolated from the fiducial measurement of $WW$ production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.

4 data tables match query

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured ratio of the production cross section of WW production with one associated jet to the production cross section of WW production with zero associated jets. The ratio is determined in the in the fiducial region which is defined in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

More…

Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

29 data tables match query

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of absolute rapidity of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of multiplicity of jets with transverse momentum pT(jet) > 30 GeV. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Version 2
Measurements of the W production cross sections in association with jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 82, 2015.
Inspire Record 1319490 DOI 10.17182/hepdata.66683

This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.

102 data tables match query

Distribution of inclusive jet multiplicity.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

More…

Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $Z$ boson in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 318-337, 2018.
Inspire Record 1620909 DOI 10.17182/hepdata.80461

A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying $Z$ boson in proton--proton collisions at $\sqrt{s} =$ 13 TeV is presented. This search uses 36.1 fb$^{-1}$ of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model $ZH$ production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass $m_H = $ 125 GeV. The corresponding limits on the production cross-section of the $ZH$ process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models.

13 data tables match query

Observed E<sub>T</sub><sup>miss</sup> distribution in the ee channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH &rarr; &#8467;&#8467; + inv signal distribution is shown with BR<sub>H &rarr; inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>&chi;</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.

Observed E<sub>T</sub><sup>miss</sup> distribution in the &mu;&mu; channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH &rarr; &#8467;&#8467; + inv signal distribution is shown with BR<sub>H &rarr; inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>&chi;</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.

DM exclusion limit in the two-dimensional phase space of WIMP mass m<sub>&chi;</sub> vs mediator mass m<sub>med</sub> determined using the combined ee+&mu;&mu; channel. Both the observed and expected limits are presented, and the 1&sigma; uncertainty band for the expected limits is also provided. Regions bounded by the limit curves are excluded at the 95% CL. The grey line labelled with "m<sub>med</sub> = 2m<sub>&chi;</sub>'' indicates the kinematic threshold where the mediator can decay on-shell into WIMPs, and the other grey line gives the perturbative limit (arXiv 1603.04156). The relic density line (arXiv 1603.04156) illustrates the combination of m<sub>&chi;</sub> and m<sub>med</sub> that would explain the observed DM relic density.

More…

Version 2
Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 765, 2017.
Inspire Record 1609448 DOI 10.17182/hepdata.78366

Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a $Z/\gamma^\ast$ boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vector-boson-fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb$^{-1}$ of proton--proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13 TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper.

7 data tables match query

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the VBF phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $M_\text{jj}$ in the VBF phase space. The fiducial SM predictions for the numerator and the denominator are also given.

More…

$ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032005, 2018.
Inspire Record 1625109 DOI 10.17182/hepdata.82224

Measurements of $ZZ$ production in the $\ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 $\mathrm{fb}^{-1}$ of collisions collected by the ATLAS experiment in 2015 and 2016. Here $\ell$ and $\ell'$ stand for electrons or muons. Integrated and differential $ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross sections with $Z \to \ell^+\ell^-$ candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all Standard-Model decays of $Z$ bosons with mass between 66 GeV and 116 GeV, resulting in a value of $17.3 \pm 0.9$ [$\pm 0.6$ (stat.) $\pm 0.5$ (syst.) $\pm 0.6$ (lumi.)] pb. The measurements are found to be in good agreement with the Standard-Model predictions. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading $Z$-boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

121 data tables match query

Integrated fiducial cross sections. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Differential fiducial cross section as function of the transverse momentum of the four-lepton system. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Predicted background as function of the transverse momentum of the four-lepton system.

More…

Measurement of the $W^+W^-$ production cross section in $pp$ collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 773 (2017) 354-374, 2017.
Inspire Record 1513473 DOI 10.17182/hepdata.79847

The production of opposite-charge $W$-boson pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV is measured using data corresponding to 3.16 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the CERN Large Hadron Collider in 2015. Candidate $W$-boson pairs are selected by identifying their leptonic decays into an electron, a muon and neutrinos. Events with reconstructed jets are not included in the candidate event sample. The cross-section measurement is performed in a fiducial phase space close to the experimental acceptance and is compared to theoretical predictions. Agreement is found between the measurement and the most accurate calculations available.

5 data tables match query

The measured fiducial cross section P P --> WW --> $e^\pm \mu^\mp$.

Detailed breakdown of the systematic uncertainties in the fiducial cross-section measurement as a result of the simultaneous fit to signal and control regions. Summarised in Table 4 of the paper.

Systematic uncertainty correlation matrix for the fiducial cross section.

More…

Measurement of multi-particle azimuthal correlations with the subevent cumulant method in $pp$ and $p$+Pb collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 97 (2018) 024904, 2018.
Inspire Record 1615757 DOI 10.17182/hepdata.82287

A detailed study of multi-particle azimuthal correlations is presented using $pp$ data at $\sqrt{s}=5.02$ and 13 TeV, and $p$+Pb data at $\sqrt{s_{\rm{NN}}}=5.02$ TeV, recorded with the ATLAS detector at the LHC. The azimuthal correlations are probed using four-particle cumulants $c_{n}\{4\}$ and flow coefficients $v_n\{4\}=(-c_{n}\{4\})^{1/4}$ for $n=2$ and 3, with the goal of extracting long-range multi-particle azimuthal correlation signals and suppressing the short-range correlations. The values of $c_{n}\{4\}$ are obtained as a function of the average number of charged particles per event, $\left\langle N_{\rm{ch}} \right\rangle$, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The three-subevent method is found to be least sensitive to short-range correlations, which originate mostly from jets with a positive contribution to $c_{n}\{4\}$. The three-subevent method gives a negative $c_{2}\{4\}$, and therefore a well-defined $v_2\{4\}$, nearly independent of $\left\langle N_{\rm{ch}} \right\rangle$, which provides direct evidence that the long-range multi-particle azimuthal correlations persist to events with low multiplicity. Furthermore, $v_2\{4\}$ is found to be smaller than the $v_2\{2\}$ measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of $v_2\{4\}$ and $v_2\{2\}$ are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry.

72 data tables match query

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for 0.3 < pT < 3 GeV.

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.2 GeV.

The c_2{4} values calculated for charged particles with 0.3 < pT < 3 GeV with the standard cumulant method from the 13 TeV pp data. The event averaging is performed for N_{ch}^{Sel} calculated for pT > 0.4 GeV.

More…

Version 3
A search for high-mass resonances decaying to $\tau\nu$ in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 120 (2018) 161802, 2018.
Inspire Record 1649273 DOI 10.17182/hepdata.80812

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}$ = 13 TeV produced by the Large Hadron Collider is presented. Only $\tau$-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy $W^{\prime}$ bosons with masses less than 3.7 TeV in the Sequential Standard Model and masses less than 2.2-3.8 TeV depending on the coupling in the non-universal G(221) model are excluded at the 95% credibility level.

8 data tables match query

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table. The table also contains each background contribution to the Standard Model expectation separately with their statistical uncertainties.

Number of expected Standard Model background events including total statistical and systematic uncertainty added in quadrature (calculated before applying the statistical fitting procedure), number of observed events, and the observed and expected 95% CL upper limits on the visible $\tau\nu$ production cross section, $\sigma_{\rm vis} = \sigma(pp \to \tau\nu +X) \cdot \mathcal{A} \cdot \varepsilon$, for $m_{\rm T}$ thresholds ranging from 250 to 1800 GeV. See HepData abstract for details on how to use this data for reinterpretation.

Observed and expected 95% CL upper limits on cross section times $\tau\nu$ branching fraction for $W^{\prime}_{\rm SSM}$.

More…

Search for heavy resonances decaying to a photon and a hadronically decaying $Z/W/H$ boson in $pp$ collisions at $\sqrt{s}=13$ $\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032015, 2018.
Inspire Record 1672010 DOI 10.17182/hepdata.82605

Many extensions of the Standard Model predict new resonances decaying to a $Z$, $W$, or Higgs boson and a photon. This paper presents a search for such resonances produced in $pp$ collisions at $\sqrt{s} = 13$ $\mathrm{TeV}$ using a dataset with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the Large Hadron Collider. The $Z/W/H$ bosons are identified through their decays to hadrons. The data are found to be consistent with the Standard Model expectation in the entire investigated mass range. Upper limits are set on the production cross section times branching fraction for resonance decays to $Z/W+\gamma$ in the mass range from 1.0 to 6.8 $\mathrm{TeV}$, and for the first time into $H+\gamma$ in the mass range from 1.0 to 3.0 $\mathrm{TeV}$.

18 data tables match query

Efficiencies for gg->X(J=0)->Zgamma signal events to pass the category selections as a function of the resonance mass.

Efficiencies for qqbar->X(J=2)->Zgamma signal events to pass the category selections as a function of the resonance mass.

Efficiencies for gg->X(J=2)->Zgamma signal events to pass the category selections as a function of the resonance mass.

More…