A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
The differential cross-section for the production of a $W$ boson in association with a top quark is measured for several particle-level observables. The measurements are performed using 36.1 fb$^{-1}$ of $pp$ collision data collected with the ATLAS detector at the LHC in 2015 and 2016. Differential cross-sections are measured in a fiducial phase space defined by the presence of two charged leptons and exactly one jet matched to a $b$-hadron, and are normalised with the fiducial cross-section. Results are found to be in good agreement with predictions from several Monte Carlo event generators.
Fiducial region definition.
Absolute cross-sections differential in E(b). Uncertainties are signed to show correlations.
Absolute cross-sections differential in m(l1b). Uncertainties are signed to show correlations.
The results of a search for the direct pair production of top squarks, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum are reported. The analysis also targets spin-0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. The search uses data from proton-proton collisions delivered by the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of $\sqrt{s}=13$ TeV and recorded by the ATLAS detector, corresponding to an integrated luminosity of 36 fb$^{-1}$. A wide range of signal scenarios with different mass-splittings between the top squark, the lightest neutralino and possible intermediate supersymmetric particles are considered, including cases where the W bosons or the top quarks produced in the decay chain are off-shell. No significant excess over the Standard Model prediction is observed. The null results are used to set exclusion limits at 95% confidence level in several supersymmetry benchmark models. For pair-produced top-squarks decaying into top quarks, top-squark masses up to 940 GeV are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section.
$\textbf{Distribution 1 } -$ Kinematic distribution of $m_{\rm top}^{\rm reclustered}$ in tN_high. The full event selection in the corresponding signal region is applied, except for the requirement that is imposed on the variable being plotted. The predicted SM backgrounds are scaled with the normalisation factors obtained from the corresponding control regions. The last bin contains overflows.
$\textbf{Distribution 2 } -$ Kinematic distribution of amT2 in bC2x_med. The full event selection in the corresponding signal region is applied, except for the requirement that is imposed on the variable being plotted. The predicted SM backgrounds are scaled with the normalisation factors obtained from the corresponding control regions. The last bin contains overflows.
$\textbf{Distribution 3 } -$ Kinematic distribution of mT in bC2x_diag. The full event selection in the corresponding signal region is applied, except for the requirement that is imposed on the variable being plotted. The predicted SM backgrounds are scaled with the normalisation factors obtained from the corresponding control regions. The last bin contains overflows.
Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log$_{10}\rho^2$, where $\rho$ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.
Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 3b. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 3c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. The uncertainties are applied symmetrically, though the cross section cannot go below zero in the first bin.
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton--proton collision data corresponding to an integrated luminosity of 36.1 fb${}^{-1}$ at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons ($e$ or $\mu$). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.
The measured leading jet $p_{T}$ distribution in the W($\rightarrow \mu \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured $E_{T}^{miss}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured leading jet $p_{T}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.
Cross section for the production of W bosons for different inclusive jet multiplicities.
Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.
Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.
Inclusive jet and dijet cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses a dataset with an integrated luminosity of 3.2 fb$^{-1}$ recorded in 2015 with the ATLAS detector at the Large Hadron Collider. Jets are identified using the anti-${k_t}$ algorithm with a radius parameter value of $R=0.4$. The inclusive jet cross-sections are measured double-differentially as a function of the jet transverse momentum, covering the range from 100 GeV to 3.5 TeV, and the absolute jet rapidity up to $|y|=3$. The double-differential dijet production cross-sections are presented as a function of the dijet mass, covering the range from 300 GeV to 9 TeV, and the half absolute rapidity separation between the two leading jets within $|y|<3$, $y*$, up to $y*=3$. Next-to-leading-order, and next-to-next-to-leading-order for the inclusive jet measurement, perturbative QCD calculations corrected for non-perturbative and electroweak effects are compared to the measured cross-sections.
rapidity bin 0 < |Y| < 0.5 anti-kt R=0.4
rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.4
rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.4
A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks into the lightest neutralino ($\displaystyle\tilde\chi^0_1$) is reported. It uses LHC proton--proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from $b$-quarks. To increase the sensitivity, the sample is divided into subsamples based on the presence or absence of electrons or muons. No excess is found above the predicted background. For $\displaystyle\tilde\chi^0_1$ masses below approximately 300 GeV, gluino masses of less than 1.97 (1.92) TeV are excluded at 95% confidence level in simplified models involving the pair production of gluinos that decay via top (bottom) squarks. An interpretation of the limits in terms of the branching ratios of the gluinos into third-generation squarks is also provided. These results improve upon the exclusion limits obtained with the 3.2 fb$^{-1}$ of data collected in 2015.
Observed 95% CL exclusion contour for Gtt model.
Expected 95% CL exclusion contour for Gtt model.
Observed 95% CL exclusion contour for Gbb model.
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 $fb^{-1}$ of proton-proton collision data recorded by the ATLAS experiment at $\sqrt{s}$ = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Systematic uncertainties:</b> <a href="80080?version=1&table=Table2">table</a><br/><br/> <b>Fit results:</b> <a href="80080?version=1&table=Table3">SRb1 and SRb2</a> <a href="80080?version=1&table=Table4">SRt1, SRt2 and SRt3</a><br/><br/> <b>Upper limits:</b> <a href="80080?version=1&table=Table5">table</a><br/><br/> <b>SR distributions:</b> <ul> <li><a href="80080?version=1&table=Table6">SRb1: $E_{\mathrm T}^{\mathrm{miss}}$</a> <li><a href="80080?version=1&table=Table7">SRb2: $\cos{\theta}^*_{bb}$</a> <li><a href="80080?version=1&table=Table8">SRt1: $m_{\mathrm T}^{\mathrm{b,min}}$</a> <li><a href="80080?version=1&table=Table9">SRt2: $E_{\mathrm T}^{\mathrm{miss,sig}}$</a> <li><a href="80080?version=1&table=Table10">SRt3: $\xi^{+}_{\ell\ell}$</a> <li><a href="80080?version=1&table=Table34">SRb1: jet $p_{T}$</a> <li><a href="80080?version=1&table=Table35">SRb2: $H_{\mathrm T}^{ratio}$</a> <li><a href="80080?version=1&table=Table36">SRt1: $\Delta R_{bb}$</a> <li><a href="80080?version=1&table=Table37">SRt2: $M_{\mathrm T}^{b,min}$</a> <li><a href="80080?version=1&table=Table38">SRt3: $\Delta \phi_{boost}$</a> </ul> <b>Exclusion limits:</b> <ul> <li>Scalar SRb2 <a href="80080?version=1&table=Table11">expected</a> <a href="80080?version=1&table=Table12">observed</a> <li>Scalar SRt1/SRt2 <a href="80080?version=1&table=Table13">expected</a> <a href="80080?version=1&table=Table14">observed</a> <li>Scalar SRt3 <a href="80080?version=1&table=Table15">expected</a> <a href="80080?version=1&table=Table16">observed</a> <li>Pseudo-scalar SRb2 <a href="80080?version=1&table=Table17">expected</a> <a href="80080?version=1&table=Table18">observed</a> <li>Pseudo-scalar SRt1/SRt2 <a href="80080?version=1&table=Table19">expected</a> <a href="80080?version=1&table=Table20">observed</a> <li>Pseudo-scalar SRt3 <a href="80080?version=1&table=Table21">expected</a> <a href="80080?version=1&table=Table22">observed</a> <li>Scalar, SRt1/SRt2 vs DM mass <a href="80080?version=1&table=Table23">expected</a> <a href="80080?version=1&table=Table24">observed</a> <li>Scalar, SRt3 vs DM mass <a href="80080?version=1&table=Table25">expected</a> <a href="80080?version=1&table=Table26">observed</a> <li>Pseudo-scalar, SRt1/SRt2 vs DM mass <a href="80080?version=1&table=Table27">expected</a> <a href="80080?version=1&table=Table28">observed</a> <li>Pseudo-scalar, SRt3 vs DM mass <a href="80080?version=1&table=Table29">expected</a> <a href="80080?version=1&table=Table30">observed</a> <li>Colour-charged scalar mediators ($b-$FDM) <a href="80080?version=1&table=Table32">expected</a> <a href="80080?version=1&table=Table33">observed</a> </ul> <b>Direct detection plot:</b> <a href="80080?version=1&table=Table31">table</a><br/><br/> <b>Acceptances:</b> <ul> <li><a href="80080?version=1&table=Table39">SRb1</a> <li><a href="80080?version=1&table=Table41">SRb2 scalar</a> <li><a href="80080?version=1&table=Table44">SRb2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table45">SRt2 scalar</a> <li><a href="80080?version=1&table=Table46">SRt1 scalar</a> <li><a href="80080?version=1&table=Table49">SRt2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table50">SRt1 pseudo-scalar</a> <li><a href="80080?version=1&table=Table53">SRt3 scalar</a> <li><a href="80080?version=1&table=Table55">SRt3 pseudo-scalar</a> </ul> <b>Efficiencies:</b> <ul> <li><a href="80080?version=1&table=Table40">SRb1</a> <li><a href="80080?version=1&table=Table42">SRb2 scalar</a> <li><a href="80080?version=1&table=Table43">SRb2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table47">SRt2 scalar</a> <li><a href="80080?version=1&table=Table48">SRt1 scalar</a> <li><a href="80080?version=1&table=Table51">SRt2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table52">SRt1 pseudo-scalar</a> <li><a href="80080?version=1&table=Table54">SRt3 scalar</a> <li><a href="80080?version=1&table=Table56">SRt3 pseudo-scalar</a> </ul> <b>Cutflows:</b> <ul> <li><a href="80080?version=1&table=Table57">SRb1</a> <li><a href="80080?version=1&table=Table58">SRb2</a> <li><a href="80080?version=1&table=Table59">SRt1 scalar</a> <li><a href="80080?version=1&table=Table60">SRt2 scalar</a> <li><a href="80080?version=1&table=Table61">SRt1 pseudo-scalar</a> <li><a href="80080?version=1&table=Table62">SRt2 pseudo-scalar</a> <li><a href="80080?version=1&table=Table63">SRt3</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)
Summary of the main systematic uncertainties and their impact on the total SM background prediction in each of the signal regions studied. A range is shown for the four bins composing SRb2 . The total systematic uncertainty can be different from the sum in quadrature of individual sources due to the correlations between them resulting from the fit to the data. The quoted theoretical uncertainties include modelling and cross-section uncertainties.
Fit results in SRb1 and SRb2 for an integrated luminosity of $36.1 fb^{-1}$. The background normalisation parameters are obtained from the background-only fit in the CRs and are applied to the SRs. Small backgrounds are indicated as Others. The dominant component of these smaller background sources in SRb1 is di-boson processes. Benchmark signal models yields are given for each SR. The uncertainties on the yields include all systematic uncertainties.