Date

Version 2
Measurements of $Z\gamma+$jets differential cross sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 072, 2023.
Inspire Record 2614196 DOI 10.17182/hepdata.135460

Differential cross-section measurements of $Z\gamma$ production in association with hadronic jets are presented, using the full 139 fb$^{-1}$ dataset of $\sqrt{s}=13$ TeV proton-proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the $Z$ boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLO$_\text{PS}$, as well as next-to-leading-order predictions from MadGraph5_aMC@NLO and Sherpa.

50 data tables

Measured differential cross section as a function of observable $ p_{T}^{ll}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll} + p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

More…

Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137848, 2023.
Inspire Record 2616326 DOI 10.17182/hepdata.140834

A measurement of the charge asymmetry in top-quark pair ($t\bar{t}$) production in association with a photon is presented. The measurement is performed in the single-lepton $t\bar{t}$ decay channel using proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-mass-energy of 13 TeV during the years 2015-2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be $A_\text{C}=-0.003 \pm 0.029$ in agreement with the Standard Model expectation.

4 data tables

The measured asymmetry of top quark pairs in $t\bar{t}\gamma$ production in a fiducial region at particle level.

Normalised differential cross section as a function of $|y(t)| - |y(\bar{t})|$. The observed data is compared with the SM expectation using aMC@NLO+Pythia8 at NLO QCD precision. The value of the charge asymmetry corresponds to the difference between the two bins. Underflow and overflow events are included in corresponding bins of the distribution.

Definition of the fiducial phase space at particle level. where, $\gamma$: photon $\ell$: lepton j: jet

More…

Version 2
Search for nonresonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 052003, 2023.
Inspire Record 2621476 DOI 10.17182/hepdata.137769

A search for nonresonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}={13}$ TeV collected with the ATLAS detector at the Large Hadron Collider, and targets both the gluon-gluon fusion and vector-boson fusion production modes. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for nonresonant Higgs boson pair production is determined to be 5.4 (8.1) times the Standard Model predicted cross-section at 95% confidence level. Constraints are placed on modifiers to the $HHH$ and $HHVV$ couplings. The observed (expected) $2\sigma$ constraints on the $HHH$ coupling modifier, $\kappa_\lambda$, are determined to be $[-3.5, 11.3]$ ($[-5.4, 11.4]$), while the corresponding constraints for the $HHVV$ coupling modifier, $\kappa_{2V}$, are $[-0.0, 2.1]$ ($[-0.1, 2.1]$). In addition, constraints on relevant coefficients are derived in the context of the Standard Model effective field theory and Higgs effective field theory, and upper limits on the $HH$ production cross-section are placed in seven Higgs effective field theory benchmark scenarios.

38 data tables

Distributions of the reconstructed m<sub>HH</sub> in data (shown by the black points), the estimated background (shown by the yellow histograms) in the VBF signal region with |&Delta;&eta;<sub>HH</sub>| &lt; 1.5. The hatching shows the total uncertainty of the background estimate. The distribution of the expected background is obtained using the best-fit values of the nuisance parameters in the fit to the data with the background-only hypothesis. Distributions for three choices of couplings are shown: the SM, &kappa;<sub>&lambda;</sub>= 6, and &kappa;<sub>2V</sub> = 0 (with all other couplings set to their SM values in the last two models), scaled so as to be visible on the plot. The lower panels show the ratio of the observed data yield to the predicted background in each bin. Events in the overflow bins are counted in the yields of the final bins. In the HEPData entry, the raw value per histogram bin is provided, while in the published paper the values in the histogram are scaled by the bin width.

Distributions of the reconstructed m<sub>HH</sub> in data (shown by the black points), the estimated background (shown by the yellow histograms) in the VBF signal region with |&Delta;&eta;<sub>HH</sub>| &gt; 1.5. The hatching shows the total uncertainty of the background estimate. The distribution of the expected background is obtained using the best-fit values of the nuisance parameters in the fit to the data with the background-only hypothesis. Distributions for three choices of couplings are shown: the SM, &kappa;<sub>&lambda;</sub>= 6, and &kappa;<sub>2V</sub> = 0 (with all other couplings set to their SM values in the last two models), scaled so as to be visible on the plot. The lower panels show the ratio of the observed data yield to the predicted background in each bin. Events in the overflow bins are counted in the yields of the final bins. In the HEPData entry, the raw value per histogram bin is provided, while in the published paper the values in the histogram are scaled by the bin width.

The observed 95&#37; CL exclusion limits as a function of &kappa;<sub>&lambda;</sub> (obtained using the signal strength &mu;<sub>ggF+VBF</sub> as the POI) from the combined ggF and VBF signal regions, as shown by the solid black line. The value of &kappa;<sub>2V</sub> is fixed to 1. The blue and yellow bands show respectively the 1&sigma; and 2&sigma; bands around the expected exclusion limits, which are shown by the dashed black line. The expected exclusion limits are obtained using a fit to the data with the background-only hypothesis. The dark red line shows the predicted combined ggF and VBF HH cross-section as a function of &kappa;<sub>&lambda;</sub>.

More…

Search for a new scalar resonance in flavour-changing neutral-current top-quark decays $t \rightarrow qX$ ($q=u,c$), with $X \rightarrow b\bar{b}$, in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 199, 2023.
Inspire Record 2621899 DOI 10.17182/hepdata.132907

A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle $X$ decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to $qX$, with $X \rightarrow b\bar{b}$, and the other top quark decays according to the Standard Model, with the $W$ boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from $b$-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction $\mathcal{B}$($t \rightarrow uX$) and between 0.018% and 0.078% for the branching fraction $\mathcal{B}$($t \rightarrow cX$), for masses of the scalar particle $X$ between 20 and 160 GeV.

8 data tables

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow uX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow cX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow uH$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$) and $\mathcal{B}$($t \rightarrow cH$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$).

More…

Search for leptonic charge asymmetry in $t\bar{t}W$ production in final states with three leptons at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 033, 2023.
Inspire Record 2622249 DOI 10.17182/hepdata.140938

A search for the leptonic charge asymmetry ($A_\text{c}^{\ell}$) of top-quark$-$antiquark pair production in association with a $W$ boson ($t\bar{t}W$) is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on $\sqrt{s} = 13$ TeV proton$-$proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015$-$2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstruction level, the asymmetry is found to be $-0.123 \pm 0.136$ (stat.) $\pm \, 0.051$ (syst.). An unfolding procedure is applied to convert the result at reconstruction level into a charge-asymmetry value in a fiducial volume at particle level with the result of $-0.112 \pm 0.170$ (stat.) $\pm \, 0.054$ (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading-order plus parton shower precision in quantum chromodynamics and including next-to-leading-order electroweak corrections. They are $-0.084 \, ^{+0.005}_{-0.003}$ (scale) $\pm\, 0.006$ (MC stat.) and $-0.063 \, ^{+0.007}_{-0.004}$ (scale) $\pm\, 0.004$ (MC stat.) respectively, and in agreement with the measurements.

10 data tables

Measured values of the leptonic charge asymmetry ($A_c^{\ell}$) in ttW production in the three lepton channel. Results are given at reconstruction level and at particle level. Expected values are obtained using the Sherpa MC generator.

Definition of the fiducial phase space at particle level with the light lepton candidates $(\ell=e,\mu)$, jets ($j$) and invariant mass of the opposite sign same flavour lepton pair ($m_{OSSF}^{ll}$).

Correlation matrix between the Normalisation Factors and the Nuisance Parameters (NP) in the fit using using both statistical and systematic uncertainties to data in all analysis regions.

More…

Measurements of differential cross sections of Higgs boson production through gluon fusion in the $H\to WW^{\ast}\to e\nu\mu\nu$ final state at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 774, 2023.
Inspire Record 2623797 DOI 10.17182/hepdata.144247

Higgs boson production via gluon-gluon fusion is measured in the $WW^{\ast} \to e\nu\mu\nu$ decay channel. The dataset utilized corresponds to an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector from $\sqrt{s}=13$ TeV proton-proton collisions delivered by the Large Hadron Collider between 2015 and 2018. Differential cross sections are measured in a fiducial phase space restricted to the production of at most one additional jet. The results are consistent with Standard Model expectations, derived using different Monte Carlo generators.

56 data tables

Measured differential fiducial cross section for $p_{T}^{H}$ in the 0+1-jet fiducial region using the regularized in-likelihood unfolding method. The quoted uncertainties include statistical and systematic uncertainties from experimental and theory sources as well as background normalization effects and shape effects from background and signal.

Measured differential fiducial cross section for $m_{\ell\ell}$ in the 0+1-jet fiducial region using the regularized in-likelihood unfolding method. The quoted uncertainties include statistical and systematic uncertainties from experimental and theory sources as well as background normalization effects and shape effects from background and signal.

Measured differential fiducial cross section for $Y_{\ell\ell}$ in the 0+1-jet fiducial region using the regularized in-likelihood unfolding method. The quoted uncertainties include statistical and systematic uncertainties from experimental and theory sources as well as background normalization effects and shape effects from background and signal.

More…

Version 2
Search for a new Z' gauge boson in $4\mu$ events with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 090, 2023.
Inspire Record 2625676 DOI 10.17182/hepdata.130818

This paper presents a search for a new Z' vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The new gauge boson Z' is predicted by $L_{\mu}-L_{\tau}$ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4$\mu$) final state, using a deep learning neural network classifier to separate the Z' signal from the Standard Model background events. The di-muon invariant masses in the $4\mu$ events are used to extract the Z' resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z' production cross-section times the decay branching fraction of $pp \rightarrow Z'\mu\mu \rightarrow 4\mu$ are set from 0.31 to 4.3 fb for the Z' mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, $g_{Z'}$, of the Z' boson to the second and third generation leptons above 0.003 - 0.2 have been excluded.

29 data tables

Summary of the chosen $Z'$ hypotheses and corresponding coupling, width, and cross-section (calculated at LO accuracy in QCD) at each mass point.

The $Z'$ signal event selection efficiencies compared to the events passing the previous cut level for several representative mass points. The overall signal efficiencies are the products of the 4$\mu$ MC filter and the combined event selection efficiencies.

The selected 4$\mu$ events in data and the estimated backgrounds and their combined statistical and systematic uncertainties.

More…

Determination of the strong coupling constant from transverse energy$-$energy correlations in multijet events at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 085, 2023.
Inspire Record 2625697 DOI 10.17182/hepdata.135073

Measurements of transverse energy$-$energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 $\mbox{fb\(^{-1}\)}$ of proton$-$proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers $Q$. The strong coupling constant $\alpha_s$ is extracted differentially as a function of $Q$, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy$-$energy correlation distributions across different kinematic regions yields a value of $\alpha_\mathrm{s}(m_Z) = 0.1175 \pm 0.0006 \mbox{ (exp.)} ^{+0.0034}_{-0.0017} \mbox{ (theo.)}$, while the global fit to the asymmetry distributions yields $\alpha_{\mathrm{s}}(m_Z) = 0.1185 \pm 0.0009 \mbox{ (exp.)} ^{+0.0025}_{-0.0012} \mbox{ (theo.)}$.

50 data tables

Particle-level TEEC results

Particle-level TEEC results for the first HT2 bin

Particle-level TEEC results for the second HT2 bin

More…

Version 2
Search for exclusive Higgs and $Z$ boson decays to $\omega\gamma$ and Higgs boson decays to $K^{*}\gamma$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 847 (2023) 138292, 2023.
Inspire Record 2626041 DOI 10.17182/hepdata.136515

Searches for the exclusive decays of the Higgs boson to an $\omega$ meson and a photon or a $K^{*}$ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous $Z$ boson decay to an $\omega$ meson and a photon, are performed with a $pp$ collision data sample corresponding to integrated luminosities of up to 134 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow\omega\gamma)< 5.5\times 10^{-4}$, ${\cal B}(H\rightarrow K^{*}\gamma)< 2.2\times10^{-4}$ and ${\cal B}(Z\rightarrow \omega\gamma)<3.9\times 10^{-6}$. The limits for $H\rightarrow \omega\gamma$ and $Z\rightarrow \omega\gamma$ are 370 times and 140 times the Standard Model expected values, respectively. The result for $Z\rightarrow \omega\gamma$ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP.

2 data tables

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-4}$, respectively.

Expected and observed branching fraction limits at the 95% CL for $H/Z\rightarrow \omega\gamma$ and $H\rightarrow K^{*}\gamma$.


Search for flavor-changing neutral-current couplings between the top quark and the $Z$ boson with LHC Run 2 proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.D 108 (2023) 032019, 2023.
Inspire Record 2627201 DOI 10.17182/hepdata.145074

A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.

18 data tables

Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.

Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.

Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).

More…