We present a high-statistics, species-identified measurement of the W-to-Be per-nucleon cross-section ratio, RW/Be, for high-xt hadrons and high-τ h+h− pairs produced in p-A collisions at √s =38.8 GeV. The data extend to 0.62 in xt and 0.39 in √τ . For single hadrons, RW/Be peaks at pt≊5 GeV/c and decreases to ≊1 for mesons with pt>8 GeV/c. At fixed pt, RW/Be falls with √s . For symmetric pairs with √τ >0.28, RW/Be=0.84±0.02±0.07, suggesting a nuclear suppression of high-z fragmentation. RW/Be increases with pout, indicative of constituent multiple scattering.
No description provided.
We present results on the production of hadrons in collisions of 400-GeV/c protons with beryllium, copper, and tungsten nuclei. The data cover the region from 5.6 to 8.0 GeV/c in the transverse momentum of the final-state hadron and from 73° to 102° in the proton-nucleon center-of-momentum frame production angle theta*. The restriction of the data to values of xT (xT=2pT/ √s ) greater than 0.4 enriches the sample with hard collisions of valence quarks. Asymmetries about theta*=90° reflect the presence of neutrons in the target nuclei. The variation of the atomic-weight dependence parameter α with production angle is discussed in the context of the phenomenology of nucleonic structure within nuclei. We also extrapolate our measurements to a ‘‘deuteron’’ target to minimize nuclear effects and compare the result to QCD calculations.
No description provided.
No description provided.
The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\pi^+}>200$MeV/c, $p_{\mu^-}>200$MeV/c, $\cos \theta_{\pi^+}>0.3$ and $\cos \theta_{\mu^-}>0.3$. The total flux integrated $\nu_\mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$) and 2$\sigma$ lower than the GENIE prediction ($7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.
Total $\nu_\mu$ CC1$\pi^+$ cross section on water in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$. The T2K data point is placed at the $\nu_\mu$ flux mean energy.
Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $p_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.
Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $\cos\theta_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.
T2K reports its first measurements of the parameters governing the disappearance of $\bar{\nu}_\mu$ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic $\bar{\nu}_\mu$ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the $\bar{\nu}_\mu$ survival probability is expected to be minimal. Using a dataset corresponding to $4.01 \times 10^{20}$ protons on target, $34$ fully contained $\mu$-like events were observed. The best-fit oscillation parameters are $\sin^2 (\bar{\theta}_{23}) = 0.45$ and $|\Delta\bar{m}^2_{32}| = 2.51 \times 10^{-3}$ eV$^2$ with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 $\times 10^{-3}$ eV$^2$ respectively. These results are in agreement with existing antineutrino parameter measurements and also with the $\nu_\mu$ disappearance parameters measured by T2K.
1$\sigma$ C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).
90% C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).
Best-fit point in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).
We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734$\times10^{20}$ protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross-section in muon kinematic variables ($\cos\theta_\mu$, $p_\mu$), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not solve the degeneracy between different models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross-section in the full phase space is $\sigma = (0.417 \pm 0.047 \text{(syst)} \pm 0.005 \text{(stat)})\times 10^{-38} \text{cm}^2$ $\text{nucleon}^{-1}$ and the cross-section integrated in the region of phase space with largest efficiency and best signal-over-background ratio ($\cos\theta_\mu>0.6$ and $p_\mu > 200$ MeV) is $\sigma = (0.202 \pm 0.0359 \text{(syst)} \pm 0.0026 \text{(stat)}) \times 10^{-38} \text{cm}^2$ $\text{nucleon}^{-1}$.
Total signal cross-section per nucleon integrated over all the muon kinematics phase space in Analysis I.
Results of the double differential cross-section measurement bin-by-bin in Analysis I.
Covariance matrix for shape systematics error in Analysis I.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.
The dijet mass distribution (NUMBER OF EVENTS).
95 PCT CL upper limit of the cross section x acceptance.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.