This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7 TeV with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1 inverse femtobarns. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MADGRAPH interfaced with PYTHIA6 displays the best overall agreement with data.
CORRECTED NORMALIZED DISTRIBUTION OF THREE-JET MASS IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.
CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.
CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE SECOND-LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.
The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.
J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.
psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.
J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.
Stringent limits are set on the long-lived lepton-like sector of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model. The limits are derived from the results presented in a recent search for long-lived charged particles in proton-proton collisions, based on data collected by the CMS detector at a centre-of-mass energy of 8 TeV at the Large Hadron Collider. In the pMSSM parameter sub-space considered, 95.9% of the points predicting charginos with a lifetime of at least 10 ns are excluded. These constraints on the pMSSM are the first obtained at the LHC. Charginos with a lifetime greater than 100 ns and masses up to about 800 GeV in the AMSB model are also excluded. The method described can also be used to set constraints on other models.
A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5 inverse femtobarns collected by the CMS experiment at the LHC in pp collisions at a centre-of-mass energy of 8 TeV. In order to separate the signal from the larger t t-bar + jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, mu, relative to the standard model prediction for a Higgs boson mass of 125 GeV. The observed (expected) exclusion limit at a 95% confidence level is mu < 4.2 (3.3), corresponding to a best fit value mu-hat = 1.2 +1.6 -1.5.
The best-fit values of the signal strength modifier obtained from the single lepton (SL) and dilepton (DL) channels alone,and from their combination (COMBINED). The observed 95% CL upper limit (UL) on mu are given in the third column, and are compared to the median expected limits for both the signal-plus-background and for the background-only hypotheses. For the latter, the 1sigma and 2sigma CL intervals are also given.
The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2
Integrated $e^{+}p$ diffractive dijet cross sections in $\gamma p$. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation is also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Integrated $e^{+}p$ diffractive dijet cross sections in DIS. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation and the radiative correction ($1+\delta_{\text{rad}}$) are also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Ratio of integrated $e^{+}p$ diffractive dijet cross sections for $Q^2<2\,\text{GeV}^2$ (photoproduction) to $Q^2>4\,\text{GeV}^2$ (DIS).
The transverse momentum ($p_{\rm T}$) spectrum and nuclear modification factor ($R_{\rm AA}$) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV were measured. Jets were reconstructed from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal), with the anti-$k_{\rm T}$ jet algorithm with a resolution parameter of R=0.2. The jet $p_{\rm T}$ spectra are reported in the pseudorapidity interval of $|{\eta}_{\rm jet}|<0.5$ for $40
The $\delta{p}_{\mathrm{T}}$ distribution for $R=0.2$ with the random-cone and the embedded-track methods in the 10% most central events, with $p_{\mathrm{T}}^{\mathrm{probe}}=60$ GeV/$c$ for the embedded-track method.
The spectra of $R=0.2$ jets with a leading track requirement of $5$ GeV/$c$ in inelastic pp collisions at $\sqrt{s}=2.76$ TeV.
The spectra of $R=0.2$ jets with a leading track requirement of $5$ GeV/$c$ in 0-10% and 10-30% most central Pb-Pb collisions scaled by 1/$N_{\mathrm{coll}}$ at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV.
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with $p_T > 120$ GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between $E_T^{miss} > 150$ GeV and $E_T^{miss} > 700$ GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.
Distributions of the measured transverse mass distribution of the identified muon in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.
Measured $E_{T}^{miss}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.
Measured leading jet $p_{T}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.
We report the results of the femtoscopic analysis of pairs of identical pions measured in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. Femtoscopic radii are determined as a function of event multiplicity and pair momentum in three spatial dimensions. As in the pp collision system, the analysis is complicated by the presence of sizable background correlation structures in addition to the femtoscopic signal. The radii increase with event multiplicity and decrease with pair transverse momentum. When taken at comparable multiplicity, the radii measured in p-Pb collisions, at high multiplicity and low pair transverse momentum, are 10-20% higher than those observed in pp collisions but below those observed in A-A collisions. The results are compared to hydrodynamic predictions at large event multiplicity as well as discussed in the context of calculations based on gluon saturation.
Definition of the V0A multiplicity classes and their corresponding $ <\mathrm{d}N_{\rm ch}/\mathrm{d}\eta> $. The given uncertainties are systematic only since the statistical ones are negligible.
Femtoscopic radii (GGG fit) in out direction as a function of pair transverse momentum for four V0A multiplicity classes.
Femtoscopic radii (GGG fit) in side direction as a function of pair transverse momentum for four V0A multiplicity classes.
The strength of forward-backward (FB) multiplicity correlations is measured by the ALICE detector in proton-proton (pp) collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV. The measurement is performed in the central pseudorapidity region ($|\eta| < 0.8$) for the transverse momentum $p_{\rm T}>0.3$ GeV/$c$. Two separate pseudorapidity windows of width ($\delta \eta$) ranging from 0.2 to 0.8 are chosen symmetrically around $\eta=0$. The multiplicity correlation strength ($b_{\rm cor}$) is studied as a function of the pseudorapidity gap ($\eta_{\rm gap}$) between the two windows as well as the width of these windows. The correlation strength is found to decrease with increasing $\eta_{\rm gap}$ and shows a non-linear increase with $\delta\eta$. A sizable increase of the correlation strength with the collision energy, which cannot be explained exclusively by the increase of the mean multiplicity inside the windows, is observed. The correlation coefficient is also measured for multiplicities in different configurations of two azimuthal sectors selected within the symmetric FB $\eta$-windows. Two different contributions, the short-range (SR) and the long-range (LR), are observed. The energy dependence of $b_{\rm cor}$ is found to be weak for the SR component while it is strong for the LR component. Moreover, the correlation coefficient is studied for particles belonging to various transverse momentum intervals chosen to have the same mean multiplicity. Both SR and LR contributions to $b_{\rm cor}$ are found to increase with $p_{\rm T}$ in this case. Results are compared to PYTHIA and PHOJET event generators and to a string-based phenomenological model. The observed dependencies of $b_{\rm cor}$ add new constraints on phenomenological models.
Correlation strength $b_{\rm corr}$ for $\eta$-windows in $p_{\rm T}$ range $0.3-1.5$ (GeV/c) at $\sqrt{s}=0.9$ TeV.
Correlation strength $b_{\rm corr}$ for $\eta$-windows in $p_{\rm T}$ range $0.3-1.5$ (GeV/c) at $\sqrt{s}=2.76$ TeV.
Correlation strength $b_{\rm corr}$ for $\eta$-windows in $p_{\rm T}$ range $0.3-1.5$ (GeV/c) at $\sqrt{s}=7$ TeV.
Differential cross sections as a function of transverse momentum pt are presented for the production of Y(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9 inverse femtobarns in pp collisions at sqrt(s) = 7 TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity abs(y) < 1.2 and dimuon transverse momentum in the range 10 < pt < 100 GeV. The measurements show a transition from an exponential to a power-law behavior at pt ~ 20 GeV for the three Y states. Above that transition, the Y spectrum is significantly harder than that of the Y(1S) and Y(2S). The ratios of the Y(3S) and Y(2S) differential cross sections to the Y(1S) cross section show a rise as pt increases at low pt, then become flatter at higher pt.
The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0 < |y| < 0.6$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.
The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0.6 < |y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.
The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $|y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.