Incoherent J/$ψ$ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This study reports the first measurement of the photon-nucleon center-of-mass energy ($W_{γ\mathrm{N}}$) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb$^{-1}$ of data recorded by the CMS experiment. The measurement covers a wide $W_{γ\mathrm{N}}$ range of $\approx$ 40-400 GeV, probing gluons carrying a fraction $x$ of nucleon momentum down to an unexplored region of 6.5 $\times$ 10$^{-5}$. Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower $x$. Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed $W_{γ\mathrm{N}}$ and $x$ range, disfavoring the establishment of the black disk limit. This study provides critical insights into the $x$-dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.
The differential incoherent $\mathrm{J}/\psi$ photoproduction cross section as a function of $|y|$, in different neutron multiplicity classes.
The differential incoherent $\mathrm{J}/\psi$ photoproduction cross section as a function of $y$, in different neutron multiplicity classes.
The incoherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ or Bjorken $x$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.
A first search for beyond the standard model physics in jet scaling patterns of multilepton events is presented, using a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of 13 TeV proton-proton collisions recorded by the CMS detector at the LHC. The search uses observed jet multiplicity distributions in one-, two-, and four-lepton events to explore possible enhancements in jet production rate in three-lepton events with and without bottom quarks. The data are found to be consistent with the standard model expectation. The results are interpreted in terms of supersymmetric production of electroweak chargino-neutralino superpartners with cascade decays terminating in prompt hadronic $R$-parity violating interactions.
Bound states of charm and anticharm quarks, known as charmonia, have a rich spectroscopic structure that can be used to probe the dynamics of hadron production in high-energy hadron collisions. Here, the cross section ratio of excited ($ψ$(2S)) and ground state (J/$ψ$) vector mesons is measured as a function of the charged-particle multiplicity in proton-lead (pPb) collisions at a center-of-mass (CM) energy per nucleon pair of 8.16 TeV. The data corresponding to an integrated luminosity of 175 nb$^{-1}$ were collected using the CMS detector. The ratio is measured separately for prompt and nonprompt charmonia in the transverse momentum range 6.5 $\lt$$p_\text{T}$$\lt$ 30 GeV and in four rapidity ranges spanning $-$2.865 $\lt$$y_\text{CM}$$\lt$ 1.935. For the first time, a statistically significant multiplicity dependence of the prompt cross section ratio is observed in proton-nucleus collisions. There is no clear rapidity dependence in the ratio. The prompt measurements are compared with a theoretical model which includes interactions with nearby particles during the evolution of the system. These results provide additional constraints on hadronization models of heavy quarks in nuclear collisions.
Normalized $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in $6.5<p_T<30.0\,GeV$ and $ -2.865 < y_{CM} < -2$ as functions of normalized $\text{N}^{{\text{corr.}}}_{\text{track}}$
Normalized $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in $6.5<p_T<30.0\,GeV$ and $ -2 < y_{CM} < -1$ as functions of normalized $\text{N}^{{\text{corr.}}}_{\text{track}}$
Normalized $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in $6.5<p_T<30.0\,GeV$ and $ -1 < y_{CM} < 1$ as functions of normalized $\text{N}^{{\text{corr.}}}_{\text{track}}$
This paper presents a first measurement of the cross-section for the charged-current Drell-Yan process $pp\rightarrow W^{\pm} \rightarrow \ell^{\pm} ν$ above the resonance region, where $\ell$ is an electron or muon. The measurement is performed for transverse masses, $m_{\text{T}}^{\text{W}}$, between 200 GeV and 5000 GeV, using a sample of 140 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected by the ATLAS detector at the LHC during 2015-2018. The data are presented single differentially in transverse mass and double differentially in transverse mass and absolute lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations from the Standard Model. The electron and muon channel measurements are combined to achieve a total experimental precision of 3% at low $m_{\text{T}}^{\text{W}}$. The single- and double differential $W$-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-next-to-leading-order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading-order electroweak effects indicates the potential of the data to constrain parton distribution functions. The data are also used to constrain four fermion operators in the Standard Model Effective Field Theory formalism, in particular the lepton-quark operator Wilson coefficient $c_{\ell q}^{(3)}.$
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
Values and uncertainties for the parameters of interest in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data. The parameters of interest are the top quark mass, $m_t$, and the ratio of the measured cross-section to the Standard Model expectation of the $t\bar{t}$ cross-section, $\mu$.
Post-fit central values and uncertaintes for the nuisance parameters (including MC stat uncertainty terms) used in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Covariance matrix for the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Hard-scattered partons ejected from high-energy proton-proton collisions undergo parton shower and hadronization, resulting in collimated collections of particles that are clustered into jets. A substructure observable that highlights the transition between the perturbative and non-perturbative regimes of jet evolution in terms of the angle between two particles is the two-point energy correlator (EEC). In this letter, the first measurement of the EEC at RHIC is presented, using data taken from 200 GeV $p$+$p$ collisions by the STAR experiment. The EEC is measured both for all the pairs of particles in jets and separately for pairs with like and opposite electric charges. These measurements demonstrate that the transition between perturbative and non-perturbative effects occurs within an angular region that is consistent with expectations of a universal hadronization regime that scales with jet momentum. Additionally, a deviation from Monte-Carlo predictions at small angles in the charge-selected sample could result from mechanics of hadronization not fully captured by current models.
Corrected distributions of the normalized EEC differential in $R_{L}$ for $R_{\rm jet}=$ 0.6, with jet transverse momentum selections 15 $< p_{\rm T, jet} <$ 20 GeV/c and 30 $< p_{\rm T, jet} <$ 50 GeV/c
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
The jet axis decorrelation in inclusive jets is studied using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The jet axis decorrelation is defined as the angular difference between two definitions of the jet axis. It is obtained by applying two recombination schemes on all the constituents of a given jet reconstructed by the anti-$k_\mathrm{T}$ sequential algorithm with a distance parameter of $R$ = 0.4. The data set, corresponding to an integrated luminosity of 0.66 nb$^{-1}$, was collected in 2018 with the CMS detector at the CERN LHC. The jet axis decorrelations are examined across collision centrality selections and intervals of jet transverse momentum. A centrality dependent evolution of the measured distributions is observed, with a progressive narrowing seen in more central events. This narrowing could result from medium-induced modification of the internal jet structure or reflect color charge effects in energy loss. This new measurement probes jet substructure in previously unexplored kinematic domains and show great promise for providing new insights on the color charge dependence of energy loss to jet-quenching models.
The unfolded jet axis decorrelation distribution,$\frac{1}{N} \frac{dN}{d\Delta j}$, as a function of $\Delta j$ for the $0-10\%$, $10-30\%$, $30-50\%$, and $50-80\%$ centrality bins in the $120 < p_{\mathrm{T}} < 150$ GeV interval.
The unfolded jet axis decorrelation distribution,$\frac{1}{N} \frac{dN}{d\Delta j}$, as a function of $\Delta j$ for the $0-10\%$, $10-30\%$, $30-50\%$, and $50-80\%$ centrality bins in the $150 < p_{\mathrm{T}} < 190$ GeV interval.
The unfolded jet axis decorrelation distribution,$\frac{1}{N} \frac{dN}{d\Delta j}$, as a function of $\Delta j$ for the $0-10\%$, $10-30\%$, $30-50\%$, and $50-80\%$ centrality bins in the $190 < p_{\mathrm{T}} < 230$ GeV interval.
Charged hadron elliptic anisotropies ($v_2$) are presented over a wide transverse momentum ($p_\text{T}$) range for proton-lead (pPb) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively. The data were recorded by the CMS experiment and correspond to integrated luminosities of 186 nb$^{-1}$ and 0.607 nb$^{-1}$ for the pPb and PbPb systems, respectively. A four-particle cumulant analysis is performed using subevents separated in pseudorapidity to effectively suppress non-collective effects. At high $p_\text{T}$ ($p_\text{T}$$\gt$ 8 GeV), significant positive $v_2$ values are observed that are similar between pPb and PbPb collisions at comparable charged particle multiplicities. This observation suggests a common origin for the multi-particle collectivity for high-$p_\text{T}$ particles in the two systems.
The elliptic anisotropy $v_2\{4\}$ for charged hadron as a function of $p_T$ in pPb collisions at 8.16 TeV in $185 \le N_{trk}^{offline} <250$.
The elliptic anisotropy $v_2\{4\}$ for charged hadron as a function of $p_T$ in PbPb collisions at 5.02 TeV in $185 \le N_{trk}^{offline} <250$.
The elliptic anisotropy $v_2\{4\}$ as a function of $p_T$ with 4-subevent method compared between pPb collisions at 8.16 TeV and PbPb collisions at 5.02 TeV in $185 \le N_{trk}^{offline} <250$.
The polarization of the $Λ$ and $\overlineΛ$ hyperons along the beam direction has been measured in proton-lead (pPb) collisions at a center-of-mass energy per nucleon pair of 8.16 TeV. The data were obtained with the CMS detector at the LHC and correspond to an integrated luminosity of 186.0 $\pm$ 6.5 nb$^{-1}$. A significant azimuthal dependence of the hyperon polarization, characterized by the second-order Fourier sine coefficient $P_{z,s2}$, is observed. The $P_{z,s2}$ values decrease as a function of charged particle multiplicity, but increase with transverse momentum. A hydrodynamic model that describes the observed $P_{z,s2}$ values in nucleus-nucleus collisions by introducing vorticity effects does not reproduce either the sign or the magnitude of the pPb results. These observations pose a challenge to the current theoretical implementation of spin polarization in heavy ion collisions and offer new insights into the origin of spin polarization in hadronic collisions at LHC energies.
The second-order Fourier sine coefficients of $\Lambda$, $\bar{\Lambda}$ and $\Lambda+\bar{\Lambda}$ polarizations along the beam direction as functions of $N_\mathrm{trk}^\mathrm{offline}$ in pPb collisions at 8.16 TeV.
The second-order Fourier sine coefficients of $\Lambda+\bar{\Lambda}$ polarization along the beam direction as functions of $p_{T}$ in pPb collisions at 8.16 TeV.
The second-order Fourier sine coefficients of $K_{S}^{0}$ polarization along the beam direction as functions of $N_\mathrm{trk}^\mathrm{offline}$ in pPb collisions at 8.16 TeV.
A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC, and correspond to an integrated luminosity of 36.7-126.9 fb$^{-1}$ depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125-1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.
Signal efficiency as a function of the mass $m_\phi$ after triple b tag selection for 2017 SL (squares), 2017 FH (triangles), and 2018 FH (circles) channels.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 SL category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 FH category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.