This Letter presents the first study of the energy-dependence of diboson polarization fractions in $WZ \rightarrow \ell\nu \ell'\ell'~(\ell, \ell'=e, \mu)$ production. The data set used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally-polarized bosons are defined. A non-zero fraction of events with two longitudinally-polarized bosons is measured with an observed significance of 5.2 standard deviations in the region with $100<p_T^Z\leq200$ GeV and 1.6 standard deviations in the region with $p_T^Z>200$ GeV, where $p_T^Z$ is the transverse momentum of the $Z$ boson. This Letter also reports the first study of the Radiation Amplitude Zero effect. Events with two transversely-polarized bosons are analyzed for the $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions defined respectively as the rapidity difference between the lepton from the $W$ boson decay and the $Z$ boson and the rapidity difference between the $W$ boson and the $Z$ boson. Significant suppression of events near zero is observed in both distributions. Unfolded $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions are also measured and compared to theoretical predictions.
Polarization fractions in the region with $100<p_T^Z\leq200$ GeV using three unconstrained parameters.
Polarization fractions in the region with $p_T^Z>200$ GeV using three unconstrained parameters.
Fraction of events where both bosons are longitudinally polarized in the region with $100<p_T^Z\leq200$ GeV using two unconstrained parameters.