Measurements of jet cross-section ratios in 13 TeV proton--proton collisions with ATLAS

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 072019, 2024.
Inspire Record 2791854 DOI 10.17182/hepdata.105630

Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb$^{-1}$ of proton--proton collisions with $\sqrt{s}=13$ TeV center-of-mass energy, recorded with the ATLAS detector at CERN's Large Hadron Collider. Observables that are sensitive the energy-scale and angular distribution of radiation due to the strong interaction in the final state are measured double-differentially, in bins of jet multiplicity, and are unfolded to account for acceptance and detector-related effects. Additionally, the scalar sum of the two leading jets' transverse momenta is measured triple-differentially, in bins of the third jet's transverse momentum as well as bins of jet multiplicity. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling $\alpha_{\textrm S}$ while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work, and are documented herein.

77 data tables match query

R32 for $H_{T2}$, 60 GeV < $p_{T,3}$

R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$

R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$

More…

Measurements of Lund subjet multiplicities in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 859 (2024) 139090, 2024.
Inspire Record 2759899 DOI 10.17182/hepdata.138878

This Letter presents a differential cross-section measurement of Lund subjet multiplicities, suitable for testing current and future parton shower Monte Carlo algorithms. This measurement is made in dijet events in 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector at CERN's Large Hadron Collider. The data are unfolded to account for acceptance and detector-related effects, and are then compared with several Monte Carlo models and to recent resummed analytical calculations. The experimental precision achieved in the measurement allows tests of higher-order effects in QCD predictions. Most predictions fail to accurately describe the measured data, particularly at large values of jet transverse momentum accessible at the Large Hadron Collider, indicating the measurement's utility as an input to future parton shower developments and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.

356 data tables match query

$N_{Lund}, k_t \geq 0.5~\text{GeV}$, All $p_T$ bins, Central $\eta$

$N_{Lund}, k_t \geq 0.5~\text{GeV}$, All $p_T$ bins, Forward $\eta$

$N_{Lund}, k_t \geq 0.5~\text{GeV}$, $300~\text{GeV} \leq p_T < 500~\text{GeV}$, Inclusive $\eta$

More…

Underlying-event studies with strange hadrons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 84 (2024) 1335, 2024.
Inspire Record 2784422 DOI 10.17182/hepdata.146740

Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.

144 data tables match query

Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$

Statistical covariance between bins of Table 1

Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$

More…

Studies of the energy dependence of diboson polarization fractions and the Radiation Amplitude Zero effect in WZ production with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 101802, 2024.
Inspire Record 2762099 DOI 10.17182/hepdata.149992

This Letter presents the first study of the energy-dependence of diboson polarization fractions in $WZ \rightarrow \ell\nu \ell'\ell'~(\ell, \ell'=e, \mu)$ production. The data set used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally-polarized bosons are defined. A non-zero fraction of events with two longitudinally-polarized bosons is measured with an observed significance of 5.2 standard deviations in the region with $100<p_T^Z\leq200$ GeV and 1.6 standard deviations in the region with $p_T^Z>200$ GeV, where $p_T^Z$ is the transverse momentum of the $Z$ boson. This Letter also reports the first study of the Radiation Amplitude Zero effect. Events with two transversely-polarized bosons are analyzed for the $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions defined respectively as the rapidity difference between the lepton from the $W$ boson decay and the $Z$ boson and the rapidity difference between the $W$ boson and the $Z$ boson. Significant suppression of events near zero is observed in both distributions. Unfolded $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions are also measured and compared to theoretical predictions.

45 data tables match query

Polarization fractions in the region with $100<p_T^Z\leq200$ GeV using three unconstrained parameters.

Polarization fractions in the region with $p_T^Z>200$ GeV using three unconstrained parameters.

Fraction of events where both bosons are longitudinally polarized in the region with $100<p_T^Z\leq200$ GeV using two unconstrained parameters.

More…

Search for the non-resonant production of Higgs boson pairs via gluon fusion and vector-boson fusion in the $b\bar{b}\tau^+\tau^-$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 032012, 2024.
Inspire Record 2779337 DOI 10.17182/hepdata.151276

A search for the non-resonant production of Higgs boson pairs in the $HH\rightarrow b\bar{b}\tau^+\tau^-$ channel is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimised to probe anomalous values of the Higgs boson self-coupling modifier $\kappa_\lambda$ and of the quartic $HHVV$ ($V = W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit $\mu_{HH}<5.9$$(3.3)$ is set at 95% confidence-level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of $-3.1 < \kappa_\lambda < 9.0$ ($-2.5 < \kappa_\lambda < 9.3$) and $-0.5 < \kappa_{2V} < 2.7$ ($-0.2 < \kappa_{2V} < 2.4$), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross-sections assuming different kinematic benchmark scenarios.

32 data tables match query

Observed (filled circles) and expected (open circles) 95% CL upper limits on $\mu_{HH}$ from the fit of each individual channel and the combined fit in the background-only ($\mu_{HH} = 0$) hypothesis. The dashed lines indicate the expected 95% CL upper limits on $\mu_{HH}$ in the SM hypothesis ($\mu_{HH} = 1$). The inner and outer bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ variations, respectively, on the expected limit with respect to the background-only hypothesis due to statistical and systematic uncertainties.

Observed and expected 95% CL upper limits on $\mu_{HH}$, $\mu_{ggF}$ and $\mu_{VBF}$ from the individual SR likelihood fits as well as the combined results. The $\mu_{ggF}$ and $\mu_{VBF}$ limits are quoted both from the results of the simultaneous fit of both signal strengths (central column), and from independent fits for the individual production modes, assuming the other to be as predicted by the SM. The uncertainties quoted on the combined expected upper limits correspond to the 1σ uncertainty band.

Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$ for the combined fit, when all other coupling modifiers are fixed to their SM predictions.

More…

Evidence for the $VH, H\rightarrow \tau\tau$ process with the ATLAS detector in Run 2

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 855 (2024) 138817, 2024.
Inspire Record 2730582 DOI 10.17182/hepdata.151813

A measurement of the Standard Model Higgs boson produced in association with a $W$ or $Z$ boson and decaying into a pair of $\tau$-leptons is presented. This search is based on proton-proton collision data collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 140 fb$^{-1}$. For the Higgs boson candidate, only final states with at least one $\tau$-lepton decaying hadronically ($\tau\rightarrow \mathrm{hadrons} + \nu_\tau$) are considered. For the vector bosons, only leptonic decay channels are considered: $Z \rightarrow \ell\ell$ and $W\rightarrow \ell\nu_\ell$, with $\ell=e,\mu$. An excess of events over the expected background is found with an observed (expected) significance of 4.2 (3.6) standard deviations, providing evidence of the Higgs boson produced in association with a vector boson and decaying into a pair of $\tau$-leptons. The ratio of the measured cross-section to the Standard Model prediction is $\mu_{\text{VH}}^{\tau\tau} = 1.28\ ^{+0.30}_{-0.29}\ (\mathrm{stat.})\ ^{+0.25}_{-0.21}\ (\mathrm{syst.})$. This result represents the most accurate measurement of the \vh process achieved to date.

35 data tables match query

Distributions of representative kinematic variables in the misidentified background-enriched same-sign region: (a) the Higgs boson transverse momentum (${p_\text{T}}^H$) in the $WH(\tau_{\mathrm{had}}\tau_{\mathrm{had}})$ category, (b) the missing transverse momentum (${E_{\mathrm{T}}^{\mathrm{miss}}}$) in the $WH(\tau_{\mathrm{lep}}\tau_{\mathrm{had}})$ category, (c) the radial distance (dR$(\ell,\ell)$) between the two light leptons associated to the $Z\to\ell{}\ell$ decay process in the $ZH(\tau_{\mathrm{had}}\tau_{\mathrm{had}})$ category, and (d) the invariant mass ($m_{\ell\ell}$) of the two light leptons associated to the $Z\to\ell{}\ell$ decay in the $ZH(\tau_{\mathrm{lep}}\tau_{\mathrm{had}})$ category. The hatched band represents the pre-fit statistical, experimental and theoretical uncertainties. The signal contributions are considered as part of the predictions and are normalized as predicted by the Standard Model.

Distributions of representative kinematic variables in the misidentified background-enriched same-sign region: (a) the Higgs boson transverse momentum (${p_\text{T}}^H$) in the $WH(\tau_{\mathrm{had}}\tau_{\mathrm{had}})$ category, (b) the missing transverse momentum (${E_{\mathrm{T}}^{\mathrm{miss}}}$) in the $WH(\tau_{\mathrm{lep}}\tau_{\mathrm{had}})$ category, (c) the radial distance (dR$(\ell,\ell)$) between the two light leptons associated to the $Z\to\ell{}\ell$ decay process in the $ZH(\tau_{\mathrm{had}}\tau_{\mathrm{had}})$ category, and (d) the invariant mass ($m_{\ell\ell}$) of the two light leptons associated to the $Z\to\ell{}\ell$ decay in the $ZH(\tau_{\mathrm{lep}}\tau_{\mathrm{had}})$ category. The hatched band represents the pre-fit statistical, experimental and theoretical uncertainties. The signal contributions are considered as part of the predictions and are normalized as predicted by the Standard Model.

Distributions of representative kinematic variables in the misidentified background-enriched same-sign region: (a) the Higgs boson transverse momentum (${p_\text{T}}^H$) in the $WH(\tau_{\mathrm{had}}\tau_{\mathrm{had}})$ category, (b) the missing transverse momentum (${E_{\mathrm{T}}^{\mathrm{miss}}}$) in the $WH(\tau_{\mathrm{lep}}\tau_{\mathrm{had}})$ category, (c) the radial distance (dR$(\ell,\ell)$) between the two light leptons associated to the $Z\to\ell{}\ell$ decay process in the $ZH(\tau_{\mathrm{had}}\tau_{\mathrm{had}})$ category, and (d) the invariant mass ($m_{\ell\ell}$) of the two light leptons associated to the {Z\to\ell{}\ell}\xspace{} decay in the $ZH(\tau_{\mathrm{lep}}\tau_{\mathrm{had}})$ category. The hatched band represents the pre-fit statistical, experimental and theoretical uncertainties. The signal contributions are considered as part of the predictions and are normalized as predicted by the Standard Model.

More…

Observation of top-quark pair production in lead-lead collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 134 (2025) 142301, 2025.
Inspire Record 2849226 DOI 10.17182/hepdata.156982

Top-quark pair production is observed in lead-lead (Pb+Pb) collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb$^{-1}$. Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross-section is $\sigma_{t\bar{t}} = 3.6\;^{+1.0}_{-0.9}\;\mathrm{(stat.)}\;^{+0.8}_{-0.5}\;\mathrm{(syst.)} ~\mathrm{\mu b}$, with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the pre-equilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early universe.

5 data tables match query

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR1 (Signal Region 1 (SR\(_1\)):} Events with exactly one muon and one oppositely charged electron, a dilepton invariant mass \( m_{e\mu} \geq 30 \, \mathrm{GeV} \), at least two jets with \( p_T \geq 35 \, \mathrm{GeV} \), and a dilepton transverse momentum \( p_T^{e\mu} > 40 \, \mathrm{GeV} \). This region is expected to be signal-dominated) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR2 (Signal Region 2 (SR\(_2\)):} Events meeting the same criteria as SR\(_1\), but with a dilepton transverse momentum \( p_T^{e\mu} \leq 40 \, \mathrm{GeV} \). This region includes events with a lower \( p_T^{e\mu} \) and has a larger background contribution) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The impact of systematic uncertainties on the fitted signal-strength parameter $\hat{\mu}$ for the combined fit of all channels. Only the 10 most significant systematic uncertainties are shown and listed in decreasing order of their impact on $\mu$ on the $y$-axis. The empty (filled) blue/cyan boxes correspond to the pre-fit (post-fit) impact on $\mu$, referring to the upper $x$-axis. The impact of each systematic uncertainty, $\Delta \mu$, is calculated by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the corresponding nuisance parameter $\theta$ to its best-fit value $\hat{\theta}$ shifted by its pre-fit (post-fit) uncertainties $\hat{\theta} \pm \Delta \theta(\hat{\theta} \pm \Delta \hat{\theta})$. The black points, which refer to the lower $x$-axis, show the pulls of the fitted nuisance parameters, i.e., the deviations of the fitted parameters $\hat{\theta}$ from their nominal values $\theta_0$, normalized to their nominal uncertainties $\Delta \theta$. The black lines show the post-fit uncertainties of the nuisance parameters, relative to their nominal uncertainties, which are indicated by the dashed lines.

More…

Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 861 (2025) 139277, 2025.
Inspire Record 2807748 DOI 10.17182/hepdata.156837

This Letter presents a constraint on the total width of the Higgs boson ($\Gamma_H$) using a combined measurement of on-shell Higgs boson production and the production of four top quarks, which involves contributions from off-shell Higgs boson-mediated processes. This method relies on the assumption that the tree-level Higgs-top Yukawa coupling strength is the same for on-shell and off-shell Higgs boson production processes, thereby avoiding any assumptions about the relationship between on-shell and off-shell gluon fusion Higgs production rates, which were central to previous measurements. The result is based on up to 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on $\Gamma_H$ is 450 MeV (75 MeV). Additionally, considering the constraint on the Higgs-top Yukawa coupling from loop-induced Higgs boson production and decay processes further yields an observed (expected) upper limit of 160 MeV (55 MeV).

6 data tables match query

The observed profile likelihood ratio, $-2ln \Lambda$, as a function of $\Gamma_H$.

The observed profile likelihood ratio, $-2ln \Lambda$, as a function of $\Gamma_H/\Gamma_H^{SM}$ and $\kappa_t$.

The observed profile likelihood ratio, $-2ln \Lambda$, as a function of $\Gamma_H/\Gamma_H^{SM}$.

More…

Search for a heavy charged Higgs boson decaying into a $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 143, 2025.
Inspire Record 2846106 DOI 10.17182/hepdata.156777

This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.

31 data tables match query

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.

Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.

More…

A simultaneous unbinned differential cross section measurement of twenty-four $Z$+jets kinematic observables with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 261803, 2024.
Inspire Record 2791852 DOI 10.17182/hepdata.153189

$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.

26 data tables match query

Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

More…