ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ}<\theta<50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3d. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15}<E_\mathrm{prim}< 6 \times 10^{16}$~eV. In this interval none of the three models is able to describe precisely the trend of the composition of cosmic rays as the energy increases. However, QGSJET-II-04 is found to be the only model capable of reproducing reasonably well the muon multiplicity distribution, assuming a heavy composition of the primary cosmic rays over the whole energy range, while SIBYLL 2.3d and EPOS-LHC underpredict the number of muons in a large interval of multiplicity by more than $20\%$ and $30\%$, respectively. The rate of high muon multiplicity events ($N_\mu>100$) obtained with QGSJET-II-04 and SIBYLL 2.3d is compatible with the data, while EPOS-LHC produces a significantly lower rate ($55\%$ of the measured rate). For both QGSJET-II-04 and SIBYLL 2.3d, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy $E_\mathrm{prim} \sim 10^{17}$ eV of these events. This result places significant constraints on more exotic production mechanisms.
Event-by-event fluctuations of the event-wise mean transverse momentum, $\langle p_{\mathrm{T}}\rangle$, of charged particles produced in proton-proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV, Xe-Xe collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.44 TeV, and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV are studied using the ALICE detector based on the integral correlator $\langle\langle \Delta p_{\rm T}\Delta p_{\rm T}\rangle\rangle $. The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe-Xe and Pb-Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe-Xe and Pb-Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity, $S_0$, of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.
In this Letter, the first evidence of the ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number $A=4$, specifically (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$. In addition, the antiparticle-to-particle ratios for both hypernuclei (${}^4_{\bar{\Lambda}}\overline{\mathrm{H}}$ / ${}^4_{\Lambda}\mathrm{H}$~and ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ / ${}^4_{\Lambda}\mathrm{He}$) are shown, which are sensitive to the baryochemical potential of the strongly-interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb--Pb collisions, collected during the 2018 LHC data-taking at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The yields measured for the average of the charge-conjugated states are found to be $[0.78 \; \pm \; 0.19 \; \mathrm{(stat.)} \; \pm \; 0.17 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{H}$ and $[1.08 \; \pm \; 0.34 \; \mathrm{(stat.)} \; \pm \; 0.20 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{He}$, and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3$\sigma$ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6$\sigma$ with the present measurements. Additionally, the measured (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ masses are compatible with the world-average values within the uncertainties.
The ALICE Collaboration presents a new suite of jet substructure measurements in Pb-Pb and pp collisions at a center-of-mass energy per nucleon pair $\sqrt{s}_{\rm NN} = 5.02$ TeV. These measurements provide access to the internal structure of jets via the momentum and angle of their constituents, probing how the quark--gluon plasma modifies jets, an effect known as jet quenching. Jet grooming additionally removes soft wide-angle radiation to enhance perturbative accuracy and reduce experimental uncertainties. We report the groomed and ungroomed jet mass $m_{\rm jet}$ and jet angularities $\lambda_\alpha^\kappa$ using $\kappa=1$ and $\alpha>0$. Charged-particle jets are reconstructed at midrapidity using the anti-$k_\mathrm{T}$ algorithm with resolution parameter $R = 0.2$. A narrowing of the jet mass and angularity distributions in Pb-Pb collisions with respect to pp is observed and is enhanced for groomed results, confirming modification of the jet core. By using consistent jet definitions and kinematic cuts between the mass and angularities for the first time, previous inconsistencies in the interpretation of quenching measurements are resolved, rectifying a hurdle for understanding how jet quenching arises from first principles and highlighting the importance of a well-controlled baseline. These results are compared with a variety of theoretical models of jet quenching, providing constraints on jet energy-loss mechanisms in the quark--gluon plasma.
Groomed jet angularity $\lambda_{\alpha,g}$ for $\alpha = 1.5$. $80<p_{\mathrm{T}}^{\mathrm{ch jet}}<100$ GeV/$c$, Soft Drop $z_{\mathrm{cut}}=0.2, \beta=0$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at ${\sqrt{{\textit s}}}=13$~TeV. The correlation functions are measured as a function of the relative azimuthal angle $\Delta\varphi$ and the pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum range $1 < p_{\rm T} < 8$ GeV/$c$. Near-side ($|\Delta\varphi|<1.3$) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation ($|\Delta\eta|<1.8$), while the per-trigger associated near-side yields are extracted for the short-range correlations ($|\Delta\eta|<1.3$). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region ($p_{\rm T} < 3$ GeV/$c$). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems.
Multiplicity dependence of the fragmentation yield $Y^{frag}$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, trig} < 3.0$ GeV/$c$ and $1.0 < p_\mathrm{T, assoc} < 2.0$ GeV/$c$. The mulitplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).
The correlations between event-by-event fluctuations of symmetry planes are measured in Pb$-$Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV recorded by the ALICE detector at the Large Hadron Collider. This analysis is conducted using the Gaussian Estimator technique, which is insensitive to biases from correlations between different flow amplitudes. The study presents, for the first time, the centrality dependence of correlations involving up to five different symmetry planes. The correlation strength varies depending on the harmonic order of the symmetry plane and the collision centrality. Comparisons with measurements from lower energies indicate no significant differences within uncertainties. Additionally, the results are compared with hydrodynamic model calculations. Although the model predictions provide a qualitative explanation of the experimental results, they overestimate the data for some observables. This is particularly true for correlators that are sensitive to the non-linear response of the medium to initial-state anisotropies in the collision system. As these new correlators provide unique information - independent of flow amplitudes - their usage in future model developments can further constrain the properties of the strongly-interacting matter created in ultrarelativistic heavy-ion collisions.
Centrality dependence of $\langle\cos[6\Psi_2+3\Psi_3-4\Psi_4-5\Psi_5]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
The interaction between pions and nucleons plays a crucial role in hadron physics. It represents a fundamental building block of the low-energy QCD dynamics and is subject to several resonance excitations. This work studies the p-$\pi^{\pm}$ dynamics using femtoscopic correlations in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV measured by ALICE at the LHC. As the final-state interaction between protons and pions is well constrained by scattering experiments and the study of pionic hydrogen, the results give access to information on the particle-emitting source in pp collisions using the femtoscopy methods. The scaling of the source size of primordial protons and pions against their pair transverse mass is extracted. The results are compared with the source sizes studied with p-p, p-K$^+$, and $\pi^{\pm}$-$\pi^{\pm}$ pairs by ALICE in the same collision system and are found to be in agreement for the different particle pairs. This reinforces recent findings by ALICE of a common emission source for all hadron-pairs in pp collisions at LHC energies. Furthermore, the p-p-$\pi^{\pm}$ systems are studied using three-particle femtoscopy in pp collisions at $\sqrt{s} = 13$ TeV. The presence of three-body effects is analyzed utilizing the cumulant expansion method. In this formalism, the known two-body interactions are subtracted in order to isolate the three-body effects. For both, p-p-$\pi^{+}$ and p-p-$\pi^{-}$, a non-zero cumulant is found, indicating effects beyond pairwise interactions. These results give information on the coupling of the pion to multiple nucleons.
(p-$\pi^{-}$)-p + (antip-$\pi^{+}$)-antip lower-order correlation function in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV
K$^{+}$K$^{-}$ pairs may be produced in photonuclear collisions, either from the decays of photoproduced $\phi (1020)$ mesons, or directly as non-resonant K$^{+}$K$^{-}$ pairs. Measurements of K$^{+}$K$^{-}$ photoproduction probe the couplings between the $\phi (1020)$ and charged kaons with photons and nuclear targets. The kaon$-$proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of K$^{+}$K$^{-}$ pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K$^{+}$K$^{-}$ production. There is significant K$^{+}$K$^{-}$ production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range $1.1 < M_{\rm{KK}} < 1.4$ GeV/$c^2$ above the $\phi (1020)$ resonance, for rapidity $|y_{\rm{KK}}|<0.8$ and $p_{\rm T,KK} < 0.1$ GeV/$c$, the measured coherent photoproduction cross section is $\mathrm{d}\sigma/\mathrm{d}y$ = 3.37 $\pm\ 0.61$ (stat.) $\pm\ 0.15 $ (syst.) mb. The center-of-mass energy per nucleon of the photon-nucleus (Pb) system $W_{\gamma \mathrm{Pb, n}}$ ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for $\phi (1020)$ photoproduction alone. The mass spectrum is fit to a cocktail consisting of $\phi (1020)$ decays, direct K$^{+}$K$^{-}$ photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K$^{+}$K$^{-}$ photoproduction are presented.
The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of $^{208}$Pb nuclei in the ALICE experiment at the LHC are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron Zero Degree Calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral $^{208}$Pb--$^{208}$Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV. The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17-25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of $^{208}$Pb. The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes $^{206,205,204}$Tl.
The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb$-$Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb$-$Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| <0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb$-$Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.