We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66
We report a measurement of the exclusive \$e^+e^- \to \Lambda_c^+ \Lambda_c^-$ cross section as a function of center-of-mass energy near the $\Lambda_c^+ \Lambda_c^-$ threshold. A clear peak with a significance of $8.8\sigma$ is observed in the $\Lambda_c^+ \Lambda_c^-$ invariant mass distribution just above threshold. With an assumption of a resonance origin for the observed peak, a mass and width of $M=(4634^{+8}_{-7} \mathrm{(stat.)} ^{+5}_{-8} \mathrm{(sys.)})\mevc$ and $\Gamma_{\mathrm{tot}}=(92^{+40}_{-24} \mathrm{(stat.)}^{+10}_{-21} \mathrm{(sys.)})\mev$ are determined. The analysis is based on a study of events with initial-state-radiation photons in a data sample collected with the Belle detector at the $\Upsilon(4S)$ resonance and nearby continuum with an integrated luminosity of 695 $\mathrm{fb}^{-1}$ at the KEKB asymmetric-energy $e^+e^_$ collider.
Inclusive momentum spectra and multiplicity distributions of charged particles measured with BESII detector at center of mass energies of 2.2,2.6,3.0,3.2,4.6 and 4.8 GeV are presented. Values of the second binomial moment, $R_2$, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy $e^+e^-$, $ep$ and $p\bar{p}$ experiments and QCD calculations.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
We report the first observation of the $\psi(4415)$ resonance in the reaction $\e^+e^-\to D^0 D^-\pi^+$ and a measurement of its cross section in the center-of-mass energy range $4.0\mathrm{GeV}$ to $5.0\mathrm{GeV}$ with initial state radiation. From a study of resonant structure in $\psi(4415)$ decay we conclude that the $\psi(4415)\to D^0 D^-\pi^+$ decay is dominated by $\psi(4415)\to D \bar D{}^{*}_2(2460)$. We obtain $\mathcal{B}(\psi(4415)\to D^0 D^-\pi^+_{\mathrm {non-resonant}})/\mathcal{B}(\psi(4415)\to D \bar D{}^{*}_2(2460)\to D^0 D^-\pi^+)<0.22$ at 90% C.L. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of 673 $\mathrm{fb}^{-1}$.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
We report final results of a series of measurements of continuum dimuon production in proton-nucleus collisions at Fermilab. New results with 6 times more statistics are included. A full description of the apparatus and methods used in the analysis of this series of measurements is given. The sea quark distribution of the nucleon is determined within the context of Drell-Yan and quantum-chromodynamic description of dilepton production in hadron collisions.
We report measurements of the exclusive cross section for $e^+e^- \to D \overline D $, where $D=D^0$ or $D^+$, in the center-of-mass energy range from the $D \overline D $ threshold to $5\mathrm{GeV}/c^2$ with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of $673$ $\mathrm{fb}^{-1}$.
We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.