Using the ARGUS detector at the e+e- storage ring DORIS II, we have searched for the real and imaginary part of the electric dipole formfactor d_tau of the tau lepton in the production of tau pairs at q^2=100 GeV^2. This is the first direct measurement of this CP violating formfactor. We applied the method of optimised observables which takes into account all available information on the observed tau decay products. No evidence for CP violation was found, and we derive the following results: Re(d_tau)=(1.6+-.9)*10^(-16) ecm and Im(d_tau)=(-0.2+-0.8)*10^(-16) ecm, where statistical and systematic errors have been combined.
Electric dipole moment in E(electric charge)*CM units. Systematic and statistical errors are added in quadrature.
We use 106 $\ipb$ of data collected with the Collider Detector at Fermilab to search for narrow-width, vector particles decaying to a top and an anti-top quark. Model independent upper limits on the cross section for narrow, vector resonances decaying to $\ttbar$ are presented. At the 95% confidence level, we exclude the existence of a leptophobic $\zpr$ boson in a model of topcolor-assisted technicolor with mass $M_{\zpr}$ $<$ 480 $\gev$ for natural width $\Gamma$ = 0.012 $M_{\zpr}$, and $M_{\zpr}$ $<$ 780 $\gev$ for $\Gamma$ = 0.04 $M_{\zpr}$.
UNSPEC here means any vector particle decaying to TQ TQBAR.
We have performed a hyperon-proton scattering experiment with a scintillating fiber active target. The Σ − p, Λ p and Σ + p scattering have been studied with the same experimental setup. In this paper, we present the differential cross sections of the Σ − p elastic scattering in the momentum region from 400 to 700 MeV /c . This is the first measurement of the Σ − p elastic scattering in the momentum region where the P- and higher waves contributions are important. The present data are in good agreement with the one boson exchange model (Bonn–Jülich model A) and the quark cluster model (FSS of Kyoto–Niigata model).
No description provided.
We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.
10 pct most central collisions.
10 to 38 pct most central collisions.
38 to 66 pct most central collisions.
The production of hard di-jet events in photoproduction at HERA is dominated by resolved photon processes in which a parton in the photon with momentum fraction x_gamma is scattered from a parton in the proton. These processes are sensitive to the quark and gluon content of the photon. The differential di-jet cross-section dsigma/dlog(x_gamma) is presented here, measured in tagged photoproduction at HERA using data taken with the H1 detector, corresponding to an integrated luminosity of 7.2 pb^(-1). Using a restricted data sample at high transverse jet energy, E_(T,jet)>6 GeV, the effective parton density f_gamma,eff(x_gamma) = [q(x_gamma) + bar(q)(x_gamma) +9/4g(x_gamma)] in the photon in leading order QCD is measured down to x_gamma=0.05 from which the gluon density in the photon is derived.
The di-jet photoproduction cross section for ET > 4 GeV.
The di-jet photoproduction cross section for ET > 6 GeV after pedestal energy subtraction.
Cross sections for elastic photoproduction of J/Psi and Upsilon mesons are presented. For J/Psi mesons the dependence on the photon-proton centre-of-mass energy W_gammap is analysed in an extended range with respect to previous measurements of 26<=W_gammap<= 285 GeV. The measured energy dependence is parameterized as sigma_gammap proportional W_gammap^delta with delta=0.83+-0.07. The differential cross section dsigma/dt for J/Psi mesons is derived, its dependence on W_gammap and on t is analysed and the effective trajectory (in terms of Regge theory) is determined to be alpha(t)=(1.27+-0.05)+(0.08+-0.17)*t/GeV^2. Models based on perturbative QCD and on pomeron exchange are compared to the data.
The cross sections for the elastic photoproduction of J/PSI particles.
Differential cross section, DSIG/DT, for the elastic photoproduction of J/PSI particles.
The slope of the DSIG/DT distribution.
The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.
Differential azimuthal angular distributions for different PT cuts.
Mean values of cos(phi) and cos(2pi) as a function of the PT cut.
The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.
The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.
The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.
The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.
We report the first measurement of a structure dependent component in the decay K^+ -> mu^+ nu gamma. Using the kinematic region where the muon kinetic energy is greater than 137 MeV and the photon energy is greater than 90 MeV, we find that the absolute value of the sum of the vector and axial-vector form factors is |F_V+F_A| =0.165 \pm 0.007 \pm 0.011. This corresponds to a branching ratio of BR(SD^+) = (1.33 \pm 0.12 \pm 0.18) \times 10^{-5}. We also set the limit -0.04 < F_V-F_A < 0.24 at 90% c.l.
Q2 independence of the formfactors is assumed.
The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.
No description provided.