Experiment WA82 studied charm production by a π − beam of 340 GeV/ c at the CERN Ω′ spectrometer, using a silicon microstrip vertex detector and an impact parameter trigger. Results on the x F distributions of D + and D − mesons are presented and discussed. A clear excess of D − over D + , increasing at high x F , is observed.
No description provided.
No description provided.
Quark and gluon jets with equal energies are identified in three-jet hadronicZ0 events, using reconstructed secondary vertices from heavy quark decay in conjunction with energy orderi
No description provided.
Using the CLEO-II detector at CESR, we have observed the D s 1 (2536) + in the decay modes D s1 + →D ∗0 K + and D ∗+ K S + , and measured its fragmentation and production ratios. Using the helicity angle distribution of the daugter D ∗0 , we obtain new evidence for the assignment of 1 + for the spin and parity of the D s 1 + . We also set upper limits on the decays D s1 + →D s ∗+ λ, D 0 K + and D + K s 0 .
No description provided.
No description provided.
The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.
Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
We have measured angular distributions of differential cross sections and analyzing powers ( A y ) of the reaction p p → d π + at six incident proton energies between 1.3 and 2.4 GeV. They confirm the rapid variations at √ s = 2.65 GeV suggested by earlier experiments. Deviations from a monotonic behavior are also found in the excitation functions of the differential cross section at t = 0 or where Θ π + (c.m.) = 0°. Structures clearly appear at √ s = 2.4 and 2.65 GeV, in some coefficients of the associated Legendre function expansions of A y .
No description provided.
No description provided.
No description provided.
The beam energy and invariant mass dependence of the dielectron yield in p + d interactions relative to the yield in p + p interactions is presented for incident kinetic energies from 1.0–4.9 GeV. The ratio of the yield in p + d interactions to that in p + p interactions decreases from 10.5±1.6 at 1.0 GeV to 1.96±0.08 at 4.9 GeV for electron pairs with invariant masses ⩾ 0.15 GeV/ c 2 . The large ratio at 1.0 GeV suggests that dielectron production in the p + d system is dominated by a p + n process. The beam energy dependence of the ratio indicates that this p + n contribution decreases with respect to the other dielectron sources as the incident energy is increased.
No description provided.
No description provided.
No description provided.
The production dynamics of baryon-antibaryon pairs are investigated using hadronic Z 0 decays, recorded with the OPAL detector, which contain at least two identified Λ baryons. The rapidly difference for Λ Λ pairs shows the correlations expected from models with a chain-like production of baryon-antibaryon pairs. If the baryon number of a Λ is compensated by a Λ , the Λ is found with a probability of 53% in an interval of ±0.6 around the Λ rapidity. This correlation strength is weaker than predicted by the Herwig Monte Carlo and the Jetset Monte Carlo with a production chain of baryon-antibaryon, and stronger than predicted by the UCLA model. The observed rapidity correlations can be described by the Jetset Monte Carlo with a dominant production chain of baryon-meson-antibaryon, the popcorn mechanism. In addition to the short range correlations, one finds an indication of a correlation of Λ Λ pairs in opposite hemispheres if both the Λ and the Λ have large rapidities. Such long range correlations are expected if the primary quark flavours are compensated in opposite hemispheres and if these quarks are found in energetic baryons. Rates for simultaneous baryon and strangeness number compensation for Λ Λ , Ξ − Ξ + and Ξ − Λ ( Λ + Λ ) are measured and compared with different Monte Carlo models.
No description provided.
Opposite and same baryon number invariant PI P mass distribuition for additional LAMBDA(LAMBDABAR) candidates in events with one identified LAMBDA(LAMBDABAR). CT.= Data read from plot.
Opposite and same baryon number invariant PI P mass distribuition for additional LAMBDA(LAMBDABAR) candidates in events with one identified XI-(XIBAR+). CT.= Data read from plot.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Final results of the measurement of the analysing power A On of the p p → n n reaction are presented. Eight measurements in the range 546–1287 MeV/ c incoming p momentum have been performed over the full angular range using a solid polarized proton target and the Low Energy Antiproton Ring (LEAR) at CERN antiproton extracted beams.
No description provided.
No description provided.
No description provided.
The hadronic lineshape of the Z has been analyzed for evidence of signals of new, narrow vector resonances in the Z-mass range. The production rate of such resonances would be enhanced due to mixing with the Z. No evidence for new states is found, and it is thus possible to exclude, at the 95% confidence level, a quarkonium state in the mass range from 87.7 to 94.7 GeV.
Statistical errors only.