A search is presented for physics beyond the standard model, based on measurements of dijet angular distributions in proton-proton collisions at $\sqrt{s}=$ 13 TeV. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 35.9 fb$^{-1}$. The observed distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Constraints are placed on models containing quark contact interactions, extra spatial dimensions, quantum black holes, or dark matter using the detector-level distributions. In a benchmark model where only left-handed quarks participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8 or 17.5 TeV, for destructive or constructive interference, respectively. The most stringent lower limits to date are set on the ultraviolet cutoff in the Arkani-Hamed-Dimopoulos-Dvali model of extra dimensions. In the Giudice-Rattazzi-Wells convention, the cutoff scale is excluded up to 10.1 TeV. The production of quantum black holes is excluded for masses below 5.9 and 8.2 TeV, depending on the model. For the first time, lower limits between 2.0 and 4.6 TeV are set on the mass of a dark matter mediator for (axial-)vector mediators, for the universal quark coupling $g_\mathrm{q}\geq$ 1.
Normalized dijet angular distribution for events with dijet mass > 6.0 TeV.
Normalized dijet angular distribution for events with 5.4 < dijet mass < 6.0 TeV.
Normalized dijet angular distribution for events with 4.8 < dijet mass < 5.4 TeV.
Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at $\sqrt{s} =$ 13 TeV are measured as a function of kinematic variables of the top quarks and the top quark-antiquark ($\mathrm{t}\overline{\mathrm{t}}$) system. In addition, kinematic variables and multiplicities of jets associated with the $\mathrm{t}\overline{\mathrm{t}}$ production are measured. This analysis is based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.8 fb$^{-1}$. The measurements are performed in the lepton+jets decay channels with a single muon or electron and jets in the final state. The differential cross sections are presented at the particle level, within a phase space close to the experimental acceptance, and at the parton level in the full phase space. The results are compared to several standard model predictions that use different methods and approximations. The kinematic variables of the top quarks and the $\mathrm{t}\overline{\mathrm{t}}$ system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of next-to-leading-order calculations and parton shower models.
Absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.
Covariance matrix of absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.
Absolute cross section at particle level as a function of $|y(\text{t}_\text{h})|$.
Measurements of inclusive and direct photon production at mid-rapidity in pp collisions at $\sqrt{s}=2.76$ and 8 TeV are presented by the ALICE experiment at the LHC. The results are reported in transverse momentum ranges of $0.4
Double Ratio RGAMMA in inelastic pp collisions at center-of-mass energy 2.76 TeV. RGAMMA is the ratio of inclusive GAMMA to decay GAMMA.
Double Ratio RGAMMA in inelastic pp collisions at center-of-mass energy 8 TeV. RGAMMA is the ratio of inclusive GAMMA to decay GAMMA.
Invariant differential cross section of inclusive GAMMA produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of $\sigma_{MB}$ of 2.5% is not included in the systematic error. Values are given in the center of the PT bin.
A search has been performed for heavy resonances decaying to ZZ or ZW in 2$\ell$2q final states, with two charged leptons ($\ell=$ e,$\mu$) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of $\sqrt{s}=$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W$'$ bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.
Distribution of the merged V candidate $\tau_{21}$, where the $\tau_{21}<$ 0.4 requirement has been removed, in data and simulation for events in the signal region of the low-mass analysis. The points show the data while the filled histograms show the background contributions. The gray band shows the statistical and systematic uncertainties in the background, while the dashed vertical region ("Higgs") shows the expected SM Higgs boson mass range, which is excluded from this analysis. A 600 GeV bulk graviton signal prediction is represented by the black dashed histogram; for visibility, the signal cross-section is increased by a factor of 5. The background normalization is derived from the final fit to the $m_{VZ}$ observable in data.
Distribution of the jet $p_{T}$ in data and simulation for events in the signal region of the low-mass analysis. The points show the data while the filled histograms show the background contributions. The gray band shows the statistical and systematic uncertainties in the background, while the dashed vertical region ("Higgs") shows the expected SM Higgs boson mass range, which is excluded from this analysis. A 600 GeV bulk graviton signal prediction is represented by the black dashed histogram; for visibility, the signal cross-section is increased by a factor of 5. The background normalization is derived from the final fit to the $m_{VZ}$ observable in data.
Distribution of V candidate $m_{j}$ in data and simulation for events in the signal regions of the low-mass search. The points show the data while the filled histograms show the background contributions. The gray band shows the statistical and systematic uncertainties in the background, while the dashed vertical region ("Higgs") shows the expected SM Higgs boson mass range, which is excluded from this analysis. A 600 GeV bulk graviton signal prediction is represented by the black dashed histogram; for visibility, the signal cross-section is increased by a factor of 5. The background normalization is derived from the final fit to the $m_{VZ}$ observable in data.
A search for direct pair production of top squarks in final states with two tau leptons, $b$-jets, and missing transverse momentum is presented. The analysis is based on proton-proton collision data at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. Two exclusive channels with either two hadronically decaying tau leptons or one hadronically and one leptonically decaying tau lepton are considered. No significant deviation from the Standard Model predictions is observed in the data. The analysis results are interpreted in terms of model-independent limits and used to derive exclusion limits on the masses of the top squark $\tilde t_1$ and the tau slepton $\tilde \tau_1$ in a simplified model of supersymmetry with a nearly massless gravitino. In this model, masses up to $m(\tilde t_1) = 1.16$ TeV and $m(\tilde \tau_1) = 1.00$ TeV are excluded at 95% confidence level.
Distribution of m<sub>T2</sub> in the signal region of the lep-had channel before the respective selection requirements, indicated by the vertical line and arrow, are applied. The stacked histograms show the various SM background contributions. The total background from events with a fake tau lepton in the lep-had channel (fake τ<sub>had</sub> + e /μ) is obtained from the fake-factor method. The hatched band indicates the total statistical and systematic uncertainty in the SM background. The error bars on the black data points represent the statistical uncertainty in the data yields. The dashed line shows the expected additional yields from a benchmark signal model. The rightmost bin includes the overflow.
Distributions of E<sub>T</sub><sup>miss</sup> in the signal region of the lep-had channel before the respective selection requirements, indicated by the vertical line and arrow, are applied. The stacked histograms show the various SM background contributions. The total background from events with a fake tau lepton in the lep-had channel (fake τ<sub>had</sub> + e /μ) is obtained from the fake-factor method. The hatched band indicates the total statistical and systematic uncertainty in the SM background. The error bars on the black data points represent the statistical uncertainty in the data yields. The dashed line shows the expected additional yields from a benchmark signal model. The rightmost bin includes the overflow.
Distributions of m<sub>T2</sub> in the signal region of the had-had channel before the respective selection requirements, indicated by the vertical line and arrow, are applied. Here, τ<sub>1</sub> (τ<sub>2</sub>) refers to the leading (subleading) τ<sub>had</sub>. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty in the SM background. The error bars on the black data points represent the statistical uncertainty in the data yields. The dashed line shows the expected additional yields from a benchmark signal model. The rightmost bin includes the overflow.
Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum $k_{\rm T}$ for different collision centralities in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. We find that the $R_{\rm side}$ and $R_{\rm out}$ radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate in phase relative to the third harmonic event plane, similar to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed-out at freeze out.
The azimuthal dependence $R_{out}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.
The azimuthal dependence $R_{out}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.
The azimuthal dependence $R_{out}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the $Z$ boson decaying to electrons or muons and the $H$ boson into a pair of $b$-quarks. No evidence for the production of an $A$ boson is found. Considering each production process separately, the 95% confidence-level upper limits on the $pp\rightarrow A\rightarrow ZH$ production cross-section times the branching ratio $H\rightarrow bb$ are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the $b$-associated process for the mass ranges 130-700 GeV of the $H$ boson and process for the mass ranges 130-700 GeV of the $H$ boson and 230-800 GeV of the $A$ boson. The results are interpreted in the context of the two-Higgs-doublet model.
The signal efficiency for the production modes (gluon-gluon fusion and b-associated production) and the signal regions used in the analysis. The efficiency denominator has the total number of generated MC events. The numerator includes the events passing the full signal region selection, including the mbb window cuts. The table shows for each signal mass pair (mA, mH) 3 efficiencies corresponding to the two production modes in the two categories, 2tag and 3tag. These corresponds to "nb = 2 category" and "nb >= 3 category", respectively, of the preprint. No numbers for gluon-gluon fusion in the 3tag category are provided since those are not used in the analysis. The efficiencies are given in fractions.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced in association with b-quarks. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the combination of the nb=2 and nb>=3 categories.
A search for a new scalar resonance decaying to a pair of Z bosons is performed in the mass range from 130 GeV to 3 TeV, and for various width scenarios. The analysis is based on proton-proton collisions recorded by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$ at a center-of-mass energy of 13 TeV. The Z boson pair decays are reconstructed using the 4$\ell$, 2$\ell$2q, and 2$\ell$2$\nu$ final states, where $\ell =$ e or $\mu$. Both gluon fusion and electroweak production of the scalar resonance are considered, with a free parameter describing their relative cross sections. A dedicated categorization of events, based on the kinematic properties of associated jets, and matrix element techniques are employed for an optimal signal and background separation. A description of the interference between signal and background amplitudes for a resonance of an arbitrary width is included. No significant excess of events with respect to the standard model expectation is observed and limits are set on the product of the cross section for a new scalar boson and the branching fraction for its decay to ZZ for a large range of masses and widths.
Expected and observed upper limits at the 95% CL on the pp --> X --> ZZ cross section as a function of $m_X$ with $\Gamma_X$=0 GeV with VBF fraction profiled.
Expected and observed upper limits at the 95% CL on the pp --> X --> ZZ cross section as a function of $m_X$ with $\Gamma_X$=0 GeV in VBF production mode.
Expected and observed upper limits at the 95% CL on the pp --> X --> ZZ cross section as a function of $m_X$ with $\Gamma_X$=10 GeV with VBF fraction profiled.
The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of $\sqrt{s}=$ 7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9 fb$^{-1}$, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, $\tau$ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26 ${^{+0.31}_{-0.26}}$.
Best fit value of the ttH signal strength modifier $\mu_{\mathrm{ttH}}$, with its 1 and 2 standard deviation confidence intervals ($\sigma$), for the five individual decay channels considered, the combined result for 7+8 TeV alone and for 13 TeV alone, and the overall combined result. The Higgs boson mass is taken to be 125.09 GeV. For the $\mathrm{H}\rightarrow\mathrm{ZZ}$ decay mode, $\mu_{\mathrm{ttH}}$ is constrained to be positive to prevent the corresponding event yield from becoming negative. The SM expectation is shown as a dashed vertical line.
Best fit value, with its uncertainty, of the ttH signal strength modifier $\mu_{\mathrm{ttH}}$, for the five individual decay channels considered, the combined result for 7+8 TeV alone and for 13 TeV alone, and the overall combined result. The total uncertainties are decomposed into their statistical (Stat), experimental systematic (Expt), background theory systematic (Thbgd), and signal theory systematic (Thsig) components.
Distribution of events as a function of the decimal logarithm of S/B, where S and B are the expected post-fit signal (with $\mu_{\mathrm{ttH}}$ = 1) and background yields, respectively, in each bin of the distributions considered in this combination. The shaded histogram shows the expected background distribution. The two hatched histograms, each stacked on top of the background histogram, show the signal expectation for the SM ($\mu_{\mathrm{ttH}}$ = 1) and the observed ($\mu_{\mathrm{ttH}}$ = 1.26) signal strengths.
Measurements of anisotropic flow coefficients with two- and multi-particle cumulants for inclusive charged particles in Pb-Pb collisions at $\sqrt{{\textit s}_\text{NN}} = 5.02$ and 2.76 TeV are reported in the pseudorapidity range $|\eta| < 0.8$ and transverse momentum $0.2 < p_\text{T} < 50$ GeV/$c$. The full data sample collected by the ALICE detector in 2015 (2010), corresponding to an integrated luminosity of 12.7 (2.0) $\mu$b$^{-1}$ in the centrality range 0-80%, is analysed. Flow coefficients up to the sixth flow harmonic ($v_6$) are reported and a detailed comparison among results at the two energies is carried out. The $p_\text{T}$ dependence of anisotropic flow coefficients and its evolution with respect to centrality and harmonic number $n$ are investigated. An approximate power-law scaling of the form $v_n(p_\text{T}) \sim p_\text{T}^{n/3}$ is observed for all flow harmonics at low $p_\text{T}$ ($0.2 < p_\text{T} < 3$ GeV/$c$). At the same time, the ratios $v_n/v_m^{n/m}$ are observed to be essentially independent of $p_\text{T}$ for most centralities up to about $p_\text{T} = 10$ GeV/$c$. Analysing the differences among higher-order cumulants of elliptic flow ($v_2$), which have different sensitivities to flow fluctuations, a measurement of the standardised skewness of the event-by-event $v_2$ distribution $P(v_2)$ is reported and constraints on its higher moments are provided. The Elliptic Power distribution is used to parametrise $P(v_2)$, extracting its parameters from fits to cumulants. The measurements are compared to different model predictions in order to discriminate among initial-state models and to constrain the temperature dependence of the shear viscosity to entropy-density ratio.
$v_2\{2,|\Delta\eta| > 1.\}$ as a function of centrality for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
$v_2\{4\}$ as a function of centrality for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
$v_3\{2,|\Delta\eta| > 1.\}$ as a function of centrality for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.