We present the first measurement of the jet pseudorapidity distribution in direct photon events from a sample of pp¯ collisions at s=1.8TeV, recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from hard quark-gluon Compton scattering, qg→qγ, with the final state quark producing the jet of hadrons. The jet pseudorapidity distribution in this model is sensitive to parton momentum fractions between 0.015 and 0.15. We find that the shape of the measured pseudorapidity distribution agrees well with next-to-leading order QCD calculations.
The fully corrected shape of the pseudorapidity distribution normalised to the data in the absolute pseudorapidity bin from 0 to 0.7.
We present a study of events with W bosons and hadronic jets produced in pbar p collisions at a center of mass energy of 1.8 TeV. The data consist of 51400 W^+/- -> e^+/- nu decay candidates from 108 pb^-1 of integrated luminosity collected with the CDF detector at the Tevatron Collider. The cross sections and jet production properties have been measured for W + \geq 1 to \geq 4 jet events. The data are compared to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated fragmentation.
W and Z0 + njet cross sections.. Data for Z0 read from the plot.
ET distribution of the highest ET jet W + >=1jet production. Data read from the plot.
ET distribution of the second highest ET jet W + >=2jet production. Data read from the plot.
We have measured the B hadron energy distribution in Z0 decays using a sample of semi-leptonic B decays recorded in the SLD experiment at SLAC. The energy of each tagged B hadron was reconstructed using information from the lepton and a partially reconstructed charm-decay vertex. We compared the scaled energy distribution with several models of heavy quark fragmentation. The average scaled energy of primary B hadrons was found to be <x_E_B> = 0.716 +- 0.011 (stat.) +0.022 -0.021 (syst.).
Bin center values for X are given.
No description provided.
We have searched for heavy neutral gauge bosons (Z′) in dielectron and dimuon decay modes using 110pb−1 of p¯p collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We present a limit on the production cross section times branching ratio of a Z′ boson decaying into dileptons as a function of Z′ mass. For mass MZ′>600GeV/c2, the upper limit is 40 fb at 95% confidence level. We set the lower mass limits of 690, 590, 620, 595, 565, 630, and 600GeV/c2 for ZSM′, Zψ, Zη, Zχ, ZI, ZLR, and ZALRM, respectively.
M is the mass of ZPRIME boson. Sigma times branching ratio.
The dilepton mass spectrum in pp¯→l+l−+X interactions is studied using dielectrons (ee) and dimuons (μμ) in 110pb−1 of data collected with the Collider Detector at Fermilab. The data are consistent with standard model predictions. The mass spectrum, being a probe for new physics, is examined for new interactions of quarks and leptons from a common composite structure. Assuming a contact interaction with the conventional coupling g02/4π=1, limits on chiral quark-electron and quark-muon compositeness scales in the range of 2.5 to 4.2 TeV are obtained.
Di-electron data and Standard Model event predicitions.
Di-muon data and Standard Model event predicitions.
We present evidence for dilepton events from t tbar production with one electron or muon and one hadronically decaying tau lepton from the decay t tbar -> (l nu_l) (tau nu_tau) b bbar, (l=e, mu), using the Collider Detector at Fermilab (CDF). In a 109 pb~-1 data sample of p pbar collisions at sqrt(s) = 1.8 TeV we expect 1 signal event and a total background of 2 events; we observe 4 candidate events (2 e tau and 2 mu tau). Three of these events have jets identified as b candidates, compared to an estimated background of 0.28+-0.02 events.
Two complementary techniques for identifying TAU's are used (see text), one'track-based' (C=TRCK) and other 'calorimeter-based' (C=CALO).
A strong signal for double parton (DP) scattering is observed in a 16pb−1 sample of p¯p→γ/π0+3jets+X data from the CDF experiment at the Fermilab Tevatron. In DP events, two separate hard scatterings take place in a single p¯p collision. We isolate a large sample of data (∼14000events) of which 53% are found to be DP. The process-independent parameter of double parton scattering, σeff, is obtained without reference to theoretical calculations by comparing observed DP events to events with hard scatterings in separate p¯p collisions. The result σeff=(14.5±1.7−2.3+1.7)mb represents a significant improvement over previous measurements, and is used to constrain simple models of parton spatial density. The Feynman x dependence of σeff is investigated and none is apparent. Further, no evidence is found for kinematic correlations between the two scatterings in DP events.
The cross section for Double Parton scattering comprised of scatterings A and B is written: SIG(DP) = SIG(A)*SIG(B)/CONST(NAME=SIG-EFF). The value of the constant SIG-EFF is measured here.
We describe the properties of six-jet events, with the six-jet mass exceeding 520GeV/c2, produced at the Fermilab proton-antiproton collider operating at a center-of-mass energy of 1.8 TeV. Observed distributions for a set of 20 multijet variables are compared with predictions from the HERWIG QCD parton shower Monte Carlo program, the NJETS leading order QCD matrix element Monte Carlo program, and a phase-space model in which six-jet events are distributed uniformly over the kinematically allowed region of the six-body phase space. In general the QCD predictions provide a good description of the observed six-jet distributions.
The 6Jet mass spectrum.
Dalitz X distribution for jet 3 in the reduced 3-JET final state.
Dalitz X distribution for jet 4 in the reduced 3-JET final state.
We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.
No description provided.
We report the observation and measurement of the rate of diffractive dijet production at the Fermilab Tevatron p¯p collider at s=1.8TeV. In events with two jets of ET>20GeV, 1.8<|η|<3.5, and η1η2>0, we find that the diffractive to nondiffractive production ratio is RJJ=[0.75±0.05(stat)±0.09(syst)]%. By comparing this result, in combination with our measured rate for diffractive W boson production reported previously, with predictions based on a hard partonic pomeron structure, we determine the pomeron gluon fraction to be fg=0.7±0.2.
No description provided.