This paper reports the first measurement of the transverse momentum ($p_{\mathrm{T}}$) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at $\sqrt{s}=13$ TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, $2.8<\eta<5.1$ and $-3.7<\eta<-1.7$. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger $p_{\mathrm{T}}$ due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to $p_{\mathrm{T}}=20$ GeV/$c$. The event selection requires at least one charged particle produced in the pseudorapidity interval $|\eta|<1$. The measured $p_{\mathrm{T}}$ distributions, average $p_{\mathrm{T}}$, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the $p_{\mathrm{T}}$-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate $p_{\mathrm{T}}$ ($2<p_{\mathrm{T}}<8$ GeV/$c$), and approaches the vicinity of unity at higher $p_{\mathrm{T}}$. The results are qualitatively described by PYTHIA, and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator.
Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $p + \overline{p}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
The first measurement of $_{\Lambda}^{3}\mathrm{H}$ and $^3_ {\overline{\Lambda}}\overline{\mathrm{H}}$ differential production with respect to transverse momentum and centrality in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$~TeV is presented. The $_{\Lambda}^{3}\mathrm{H}$ has been reconstructed via its two-charged-body decay channel, i.e., $_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}$. A Blast-Wave model fit of the $p_{\rm T}$-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the $_{\Lambda}^{3}\mathrm{H}$ kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of $_{\Lambda}^{3}\mathrm{H}$ and $^3\mathrm{He}$ is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements.
Transverse momentum distributions of (anti)hypertriton in 0-10% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 10-30% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 30-50% V0M centrality class
Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.
The ⟨TAA⟩ and ⟨Npart⟩ values and their uncertainties in each centrality bin.
No description provided.
No description provided.
Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.
The $R_{\mathrm{coll}}$ and $T_{p\mathrm{A}}$ values and their uncertainties in each centrality bin.
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.
The $\langle T_{\mathrm{AA}} \rangle $ and $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties in each centrality bin.
No description provided.
No description provided.