An analysis of proton-antiproton collisions at √s =1.8 TeV recorded with the Collider Detector at Fermilab (CDF) yields σ(pp¯→WX)B(W→μν)=2.21±0.22 nb and σ(pp¯→ZX)B(Z →μ+μ−)=0.226±0.032 nb. The ratio is Rμ=σWB(W→μν)/σZB(Z→μ+μ−)=9.8±1.2. Combining with previous CDF electron results gives σWB(W→lν)=2.20±0.20 nb, σZB(Z→l+l−)=0.214±0.023 nb, and Rl=10.0±0.8. We extract the ratios of the coupling constants gμ/ge and gτ/gμ. Using standard model assumptions we deduce the inverse branching ratio B−1(W→lν), the width Γ(W), and a decay-mode-independent lower bound on the top quark mass of 45 GeV/c2 (95% C.L.).
No description provided.
No description provided.
No description provided.
Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.
No description provided.
No description provided.
No description provided.
The process e + e − →e + e − μ + μ − has been studied in single-tag and double-tag configurations using the TOPAZ detector at TRISTAN. The data correspond to the integrated luminosity of 45.3pb − at center-of-mass energies ranging from 52 to 61.4 GeV. The observed events in both configurations have shown a good agreement with QED predictions in order α 4 . Although the AMY group reported an excess of e + e − →e + e − μ + μ − events in double-tag mode at low muon invariant mass region less than 1.0 GeV/c 2 , we did not observed such excess in our data.
No description provided.
Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.
Xenon structure function parameterized as being equal to the DEUT structurefunction.
Xenon structure function parameterized by an x-dependent shadowing factor times the DEUT structure function.
The B0 B¯ 0 average mixing parameter χ has been extracted from eμ and ee events produced in pp¯ collisions at √s =1.8 TeV. In a sample of 900 eμ events, the like-sign to opposite-sign charge ratio R is measured to be 0.556±0.048(stat)−0.042+0.035(syst). In the absence of mixing, the expected value of R would be 0.23±0.06. The corresponding number for 212 ee events is 0.573±0.116(stat)±0.047(syst) with an expected nonmixing value of 0.24±0.07. The observed excess in R leads to a combined determination of χ=0.176±0.031(stat+syst) ±0.032 (model), where the last uncertainty is due to Monte Carlo modeling.
No description provided.
No description provided.
We present results on J/ψ production in muon interactions with tin and carbon targets at incident muon energies of 200 and 280 GeV. The ratio of cross sections per nucleon for J/ψ production on tin and carbon, R (Sn/C), is studied as a function of p T 2 , z and x . We find an enhancement for coherent J/ψ production R coh (Sn/C) = 1.54 ± 0.07, a suppression for quasielastic production R qe (Sn/C) = 0.79 ± 0.06 and for inelastic production R in (Sn/C) = 1.13 ± 0.08. The inelastic cross section ratio can be interpreted within the Colour Singlet model as an enhancement of the gluon distribution in tin with respect to that in carbon. The dependence of the ratio on z and p T 2 can explain the discrepancy between the results obtained in previous experiments.
Data for coherent events.
Data for quasielastic events.
Data for inelastic events.
Muon-pair production has been measured in pCu, pU, OCu, OU and SU collisions at 200 GeV per nucleon. The cross sections are compatible with the atomic number dependence ( A proj. A targ. ) α where α =0.91±0.04 for the J/ψ resonance and α =1.01±0.04 for muon pairs produced in the mass continuum between 1.7 and 2.7 GeV/ c 2 .
Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).
Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).
No description provided.
Results are presented on the ratio of neutron and proton structure functions, F 2 n / F 2 p , deduced from deep inelastic scattering of muon from hydrogen and deuterium. The data, which were obtained at the CERN muon beam at 90 and 280 GeV incident energy, cover the kinematic range x = 0.002−0.80 and Q 2 = 0.1−190 GeV 2 . The measured structure function ratios have small statistical and systematic errors, particularly at small and intermediate x . The observed Q 2 dependence in the range x = 0.1−0.4 is stronger than predicted by perturbative QCD. From the present data together with results from other experiments it is suggested that the twist-four coefficient for the proton is smaller than that for the neutron for x larger than 0.2.
No description provided.
No description provided.
Merged 90 and 280 GeV data.
The structure function ratiosF2C/F2Li,F2Ca/F2Li andF2Ca/F2C were measured in deep inelastic muonnucleus scattering at an incident muon energy of 90 GeV, covering the kinematic range 0.0085
Overall normalization error of 0.7%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.5%, due to uncertainties in target thickness, not included in the table.
Neutral strange particle production in\(\bar v\) Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% forK0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% for\(\bar \Lambda \) and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties ofK0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.
No description provided.
No description provided.
No description provided.