Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}=13$ TeV and with an integrated luminosity of 140 fb$^{-1}$. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory.
Predicted and observed yields as a function of $m_{jj}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.
Predicted and observed yields as a function of $m_{jj}$ in the VBS-Suppressed region. Overflow events are included in the last bin of the distribution.
Predicted and observed yields as a function of $m_{4\ell}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.
Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.
Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of prompt $\psi(2S)$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
A study of the polarisation and CP properties in $ZZ$ production is presented. The used data set corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The $ZZ$ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised $Z$ bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be $2.45 \pm 0.60$ fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings.
Unfolded differential cross-section as a function of the Optimal Observable $\mathcal{O}_{T_{yz,1} T_{yz,3}}$
A search for a new heavy scalar particle $X$ decaying into a Standard Model (SM) Higgs boson and a new singlet scalar particle $S$ is presented. The search uses a proton-proton ($pp$) collision data sample with an integrated luminosity of 140 fb$^{-1}$ recorded at a centre-of-mass energy of $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. The most sensitive mass parameter space is explored in $X$ mass ranging from 500 to 1500 GeV, with the corresponding $S$ mass in the range 200-500 GeV. The search selects events with two hadronically decaying $\tau$-lepton candidates from $H\to \tau^+\tau^-$ decays and one or two light leptons ($\ell=e,\,\mu$) from $S\to VV$ ($V = W,\,Z$) decays while the remaining $V$ boson decays hadronically or to neutrinos. A multivariate discriminant based on event kinematics is used to separate the signal from the background. No excess is observed beyond the expected SM background and 95% confidence level upper limits between 72 fb and 542 fb are derived on the cross-section $\sigma(pp\to X\to SH)$ assuming the same SM-Higgs boson-like decay branching ratios for the $S\to VV$ decay. Upper limits on the visible cross-sections $\sigma(pp\to X\to SH \to WW\tau\tau)$ and $\sigma(pp\to X\to SH \to ZZ\tau\tau)$ are also set in the ranges 3-26 fb and 6-33 fb, respectively.
Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH)$ obtained from $WW1\ell2\tau_{\mathrm{had}}$, $WW2\ell2\tau_{\mathrm{had}}$, $ZZ2\ell2\tau_{\mathrm{had}}$, and their combination, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV.
Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH\to WW\tau\tau)$ obtained from the combination of $WW1\ell2\tau_{\mathrm{had}}$ and $WW2\ell2\tau_{\mathrm{had}}$ channels, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV. The NMSSM scans of the allowed cross-sections for $\sigma(pp\to X\to SH\to WW\tau\tau)$ are also compared.
Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH\to ZZ\tau\tau)$ obtained from $ZZ2\ell2\tau_{\mathrm{had}}$ channel, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV. The NMSSM scans of the allowed cross-sections for $\sigma(pp\to X\to SH\to ZZ\tau\tau)$ are also compared.
A search for forward proton scattering in association with light-by-light scattering mediated by an axion-like particle is presented, using the ATLAS Forward Proton spectrometer to detect scattered protons and the central ATLAS detector to detect pairs of outgoing photons. Proton-proton collision data recorded in 2017 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV were analysed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 441 candidate signal events were selected. A search was made for a narrow resonance in the diphoton mass distribution, corresponding to an axion-like particle (ALP) with mass in the range 150-1600 GeV. No excess is observed above a smooth background. Upper limits on the production cross section of a narrow resonance are set as a function of the mass, and are interpreted as upper limits on the ALP production coupling constant, assuming 100% decay branching ratio into a photon pair. The inferred upper limit on the coupling constant is in the range 0.04-0.09 TeV$^{-1}$ at 95%confidence level.
Signal selection efficiency as a function of ALP mass $m_{\textrm{X}}$ for the exclusive (EL), single-dissociative (SD), and double-dissociative (DD) processes. The ratio of the number of selected events to the number of generated MC events is given (black points) and is parameterised by an analytic function (red solid line). The linear (black dashed line) and cubic (blue chain line) interpolations of the black points are used to derive the envelopes (cyan filled region) which are regarded as systematic uncertainties.
The diphoton mass distribution of the mixed-data sample (black points).
The $(\xi_{\gamma\gamma}^{+},\xi_{\gamma\gamma}^{-})$ distribution of the selected data candidates after the full event selection in $m_{\gamma\gamma}$ in [150,1600] GeV with $m_{\gamma\gamma}$ contours (blue) and $y_{\gamma\gamma}$ contours (black). The range of $\xi_{\gamma\gamma}$ in which forward-proton matching is possible, $[0.035-\xi_{\textrm{th}}, 0.08+\xi_{\textrm{th}} ]$, for events that pass the matching requirement to the A or C side as indicated. No event passed the matching requirement for both the A-side and C-side.
A search for a new massive charged gauge boson, $W'$, is performed with the ATLAS detector at the LHC. The dataset used in this analysis was collected from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The reconstructed $tb$ invariant mass is used to search for a $W'$ boson decaying into a top quark and a bottom quark. The result is interpreted in terms of a $W'$ boson with purely right-handed or left-handed chirality in a mass range of 0.5-6 TeV. Different values for the coupling of the $W'$ boson to the top and bottom quarks are considered, taking into account interference with single-top-quark production in the $s$-channel. No significant deviation from the background prediction is observed. The results are expressed as upper limits on the $W' \rightarrow tb$ production cross-section times branching ratio as a function of the $W'$-boson mass and in the plane of the coupling vs the $W'$-boson mass.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=contour_lh">$W^{\prime}_L$ exclusion contour</a> <li><a href="?table=contour_rh">$W^{\prime}_R$ exclusion contour</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=limit_lh_gf05">$W^{\prime}_L$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_lh_gf10">$W^{\prime}_L$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_lh_gf20">$W^{\prime}_L$ $g^{\prime}/g$ = 2.0 upper limit</a> <li><a href="?table=limit_rh_gf05">$W^{\prime}_R$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_rh_gf10">$W^{\prime}_R$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_rh_gf20">$W^{\prime}_R$ $g^{\prime}/g$ = 2.0 upper limit</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=0l_sr1">0L channel Signal Region 1</a> <li><a href="?table=0l_sr2">0L channel Signal Region 2</a> <li><a href="?table=0l_sr3">0L channel Signal Region 3</a> <li><a href="?table=0l_vr">0L channel Validation Region</a> <li><a href="?table=1l_sr_2j1b">1L channel 2j1b Signal Region</a> <li><a href="?table=1l_sr_3j1b">1L channel 3j1b Signal Region</a> <li><a href="?table=1l_sr_2j2b">1L channel 2j2b Signal Region</a> <li><a href="?table=1l_sr_3j2b">1L channel 3j2b Signal Region</a> <li><a href="?table=1l_cr_2j1b">1L channel 2j1b Control Region</a> <li><a href="?table=1l_cr_3j1b">1L channel 3j1b Control Region</a> <li><a href="?table=1l_vr_2j1b">1L channel 2j1b Validation Region</a> <li><a href="?table=1l_vr_3j1b">1L channel 3j1b Validation Region</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=acc_0l_lh_gf10">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf05">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf20">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf10">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf05">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf20">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf10">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf05">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf20">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf10">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf05">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf20">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> </ul>
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 1 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 2 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
A search for physics beyond the Standard Model inducing periodic signals in the dielectron and diphoton invariant mass spectra is presented using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS experiment at the LHC. Novel search techniques based on continuous wavelet transforms are used to infer the frequency of periodic signals from the invariant mass spectra and neural network classifiers are used to enhance the sensitivity to periodic resonances. In the absence of a signal, exclusion limits are placed at the 95% confidence level in the two-dimensional parameter space of the clockwork gravity model. Model-independent searches for deviations from the background-only hypothesis are also performed.
The observed exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The median expected exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
The expected plus one standard deviation exclusion limit at 95% CL for the clockwork gravity model projected in the $k–M_{5}$ parameter space for the $ee$ channel for the case with mass thresholds.
This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.
Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.
Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.
Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.
The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $σ(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $σ(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $σ(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=σ(tq)/σ(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/Λ^2 < 0.06$ and $-0.87 < C_{ϕQ}^{3}/Λ^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $σ(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and corresponds to an integrated luminosity of 139fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ or $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$, where the $\tilde{\chi}_1^0$ is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of $tc + E_{\text{T}}^{\text{miss}}$. Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the $m(\tilde{t}_1)$ vs $m(\tilde{\chi}_1^0)$ plane and, in addition, limits on the branching ratio of the $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$ decay as a function of $m(\tilde{t}_1)$ are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=mass_obs">Observed exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_exp">Expected exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_1">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_2">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_obs">Observed exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_exp">Expected exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_1">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_2">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mass_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> <li><a href="?table=mass_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRA_ntop">SRA region number of top-tagged jets distribution</a> <li><a href="?table=SRA_mttwo">SRA region $m_{\mathrm{T2}}(j^{b}_{R=1.0}, c)$ distribution</a> <li><a href="?table=SRB_ptc">SRB region leading c-tagged jet $p_{\mathrm{T}}$</a> <li><a href="?table=SRB_mtj">SRB region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRC_metsig">SRC region missing transverse momentum significance distribution</a> <li><a href="?table=SRC_mtj">SRC region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRD_NN">SRD NN signal score distribution</a> <li><a href="?table=SRD_meff">SRD $m_{\mathrm{eff}}$ distribution</a> </ul> <b>Pull distributions:</b> <ul> <li><a href="?table=SRABCPull">Pull plots showing the SRA, SRB and SRC post-fit data and SM agreement using the background-only fit configuration</a> <li><a href="?table=SRDPull">Pull plots showing the SRD post-fit data and SM agreement using the background-only fit configuration</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRA">Cutflow of 3 signal points in the SRA region.</a> <li><a href="?table=cutflow_SRB">Cutflow of 3 signal points in the SRB region.</a> <li><a href="?table=cutflow_SRC">Cutflow of 3 signal points in the SRC region.</a> <li><a href="?table=cutflow_SRD750">Cutflow of 3 signal points in the SRD750 region.</a> <li><a href="?table=cutflow_SRD1000">Cutflow of 3 signal points in the SRD1000 region.</a> <li><a href="?table=cutflow_SRD1250">Cutflow of 3 signal points in the SRD1250 region.</a> <li><a href="?table=cutflow_SRD1500">Cutflow of 3 signal points in the SRD1500 region.</a> <li><a href="?table=cutflow_SRD1750">Cutflow of 3 signal points in the SRD1750 region.</a> <li><a href="?table=cutflow_SRD2000">Cutflow of 3 signal points in the SRD2000 region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>SRA_bin1:</b> <a href="?table=Acc_SRA_bin1">Acceptance table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin1">Efficiency table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRA_bin2:</b> <a href="?table=Acc_SRA_bin2">Acceptance table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin2">Efficiency table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin1:</b> <a href="?table=Acc_SRB_bin1">Acceptance table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin1">Efficiency table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin2:</b> <a href="?table=Acc_SRB_bin2">Acceptance table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin2">Efficiency table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin3:</b> <a href="?table=Acc_SRB_bin3">Acceptance table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin3">Efficiency table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin1:</b> <a href="?table=Acc_SRC_bin1">Acceptance table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin1">Efficiency table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin2:</b> <a href="?table=Acc_SRC_bin2">Acceptance table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin2">Efficiency table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin3:</b> <a href="?table=Acc_SRC_bin3">Acceptance table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin3">Efficiency table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin4:</b> <a href="?table=Acc_SRC_bin4">Acceptance table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin4">Efficiency table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin1:</b> <a href="?table=Acc_SRD_bin1">Acceptance table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin1">Efficiency table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin2:</b> <a href="?table=Acc_SRD_bin2">Acceptance table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin2">Efficiency table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin3:</b> <a href="?table=Acc_SRD_bin3">Acceptance table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin3">Efficiency table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin4:</b> <a href="?table=Acc_SRD_bin4">Acceptance table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin4">Efficiency table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin5:</b> <a href="?table=Acc_SRD_bin5">Acceptance table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin5">Efficiency table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin6:</b> <a href="?table=Acc_SRD_bin6">Acceptance table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin6">Efficiency table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)
Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.
Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$ and a $+1 \sigma$ deviation of the NNLO+NNLL theoretical cross-section of a $\tilde{t}_1$ pair-production.