Date

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables match query

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…

Search for heavy long-lived multi-charged particles in the full LHC Run 2 $pp$ collision data at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 847 (2023) 138316, 2023.
Inspire Record 2648109 DOI 10.17182/hepdata.135815

A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2015-2018 at $\sqrt{s}$ = 13 TeV from $pp$ collisions corresponding to an integrated luminosity of 139 fb$^{-1}$ are examined. Particles producing anomalously high ionization, consistent with long-lived spin-1/2 massive particles with electric charges from $|q|=2e$ to $|q|=7e$ are searched for. No statistically significant evidence of such particles is observed, and 95% confidence level cross-section upper limits are calculated and interpreted as the lower mass limits for a Drell-Yan plus photon-fusion production mode. The least stringent limit, 1060 GeV, is obtained for $|q|=2e$ particles, and the most stringent one, 1600 GeV, is for $|q|=6e$ particles.

3 data tables match query

The signal efficiencies for spin-1/2 MCPs with different charges and masses for the DY+PF production mode versus their mass.

Observed 95% CL cross-section upper limits as a function of the muon-like spin-1/2 MCP's mass for the DY+PF production mode.

Cutflow (sum of weights of events satisfying cumulative selection requirements) for several signal benchmark points. Event counts are scaled by their respective cross-sections.


Version 2
Observation of gauge boson joint-polarisation states in $W^{\pm}Z$ production from $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137895, 2023.
Inspire Record 2183192 DOI 10.17182/hepdata.135074

Measurements of joint-polarisation states of $W$ and $Z$ gauge bosons in $W^{\pm}Z$ production are presented. The data set used corresponds to an integrated luminosity of $139$ fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The simultaneous pair-production of longitudinally polarised vector bosons is measured for the first time with a significance of $7.1$ standard deviations. The measured joint helicity fractions integrated over the fiducial region are $f_{\mathrm{00}} = 0.067 \pm 0.010$, $f_{\mathrm{0T}} = 0.110 \pm 0.029$, $f_{\mathrm{T0}} = 0.179 \pm 0.023$ and $f_{\mathrm{TT}} = 0.644 \pm 0.032$, in agreement with the next-to-leading-order Standard Model predictions. Individual helicity fractions of the $W$ and $Z$ bosons are also measured and found to be consistent with joint helicity fractions within the expected amount of correlations. Both the joint and individual helicity fractions are also measured separately in $W^+Z$ and $W^-Z$ events. Inclusive and differential cross sections for several kinematic observables sensitive to polarisation are presented.

20 data tables match query

Measured fiducial Born-level cross section for a single leptonic decay channel $\ell'^\pm \nu \ell^+ \ell'^-$ of the $W$ and $Z$ bosons, where $\ell, \ell' = e, \mu$. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds and pileup. The last bin is a cross section for all events above the lower end of the bin.

Correlation matrix for the unfolded cross section.

Measured fiducial Born-level cross section for a single leptonic decay channel $\ell'^\pm \nu \ell^+ \ell'^-$ of the $W$ and $Z$ bosons, where $\ell, \ell' = e, \mu$. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds and pileup. The last bin is a cross section for all events above the lower end of the bin.

More…

Version 2
Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle $X$ in hadronic final states using $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 052009, 2023.
Inspire Record 2666488 DOI 10.17182/hepdata.135828

A search is presented for a heavy resonance $Y$ decaying into a Standard Model Higgs boson $H$ and a new particle $X$ in a fully hadronic final state. The full Large Hadron Collider Run 2 dataset of proton-proton collisions at $\sqrt{s}= 13$ TeV collected by the ATLAS detector from 2015 to 2018 is used, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets the high $Y$-mass region, where the $H$ and $X$ have a significant Lorentz boost in the laboratory frame. A novel signal region is implemented using anomaly detection, where events are selected solely because of their incompatibility with a learned background-only model. It is defined using a jet-level tagger for signal-model-independent selection of the boosted $X$ particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark $X$ decay into two quarks, covering topologies where the $X$ is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into $b\bar{b}$, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}b\bar{b}$) for signals with $m_Y$ between 1.5 and 6 TeV and $m_X$ between 65 and 3000 GeV.

6 data tables match query

Acceptance times efficiency for signal grid in anomaly signal region.

Acceptance times efficiency for signal grid in merged two-prong signal region.

Acceptance times efficiency for signal grid in resolved two-prong signal region.

More…

Version 3
Search for resonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092002, 2022.
Inspire Record 2032611 DOI 10.17182/hepdata.111124

A search for resonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126-139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis is divided into two channels, targeting Higgs boson decays which are reconstructed as pairs of small-radius jets or as individual large-radius jets. Spin-0 and spin-2 benchmark signal models are considered, both of which correspond to resonant $HH$ production via gluon$-$gluon fusion. The data are consistent with Standard Model predictions. Upper limits are set on the production cross-section times branching ratio to Higgs boson pairs of a new resonance in the mass range from 251 GeV to 5 TeV.

20 data tables match query

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-0 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-2 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Corrected $m(HH)$ distribution in the resolved $4b$ validation region (dots), compared with the reweighted distribution in $2b$ validation region (teal histogram). The error bars on the $4b$ points represent the Poisson uncertainties corresponding to their event yields. The final bin includes overflow. The background uncertainty (gray band) is computed by adding all individual components in quadrature. The bottom panel shows the difference between the $4b$ and reweighted $2b$ distributions, relative to the $2b$ distribution.

More…

Version 2
Search for exclusive Higgs and $Z$ boson decays to $\omega\gamma$ and Higgs boson decays to $K^{*}\gamma$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 847 (2023) 138292, 2023.
Inspire Record 2626041 DOI 10.17182/hepdata.136515

Searches for the exclusive decays of the Higgs boson to an $\omega$ meson and a photon or a $K^{*}$ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous $Z$ boson decay to an $\omega$ meson and a photon, are performed with a $pp$ collision data sample corresponding to integrated luminosities of up to 134 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow\omega\gamma)< 5.5\times 10^{-4}$, ${\cal B}(H\rightarrow K^{*}\gamma)< 2.2\times10^{-4}$ and ${\cal B}(Z\rightarrow \omega\gamma)<3.9\times 10^{-6}$. The limits for $H\rightarrow \omega\gamma$ and $Z\rightarrow \omega\gamma$ are 370 times and 140 times the Standard Model expected values, respectively. The result for $Z\rightarrow \omega\gamma$ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP.

2 data tables match query

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-4}$, respectively.

Expected and observed branching fraction limits at the 95% CL for $H/Z\rightarrow \omega\gamma$ and $H\rightarrow K^{*}\gamma$.


Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137745, 2023.
Inspire Record 2175556 DOI 10.17182/hepdata.135471

Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.

44 data tables match query

Observed and expected 95% CL upper limits on the signal strength for double-Higgs production from the bbbb, bb$\tau\tau$ and bb$\gamma\gamma$ decay channels, and their statistical combination. The value $m_H$ = 125.09 GeV is assumed when deriving the predicted SM cross-section. The expected limit and the corresponding error bands are derived assuming the absence of the HH process and with all nuisance parameters profiled to the observed data.

Observed and expected 95% CL exclusion limits on the production cross-sections of the combined ggF HH and VBF HH processes as a function of $\kappa_\lambda$, for the three double-Higgs search channels and their combination. The expected limits assume no HH production. The red line shows the theory prediction for the combined ggF HH and VBF HH cross-section as a function of $\kappa_\lambda$ where all parameters and couplings are set to their SM values except for $\kappa_\lambda$. The band surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section.

Observed and expected 95% CL exclusion limits on the production cross-sections of the VBF HH process as a function of $\kappa_{2V}$, for the three double-Higgs search channels and their combination. The expected limits assume no VBF HH production. The red line shows the predicted VBF HH cross-section as a function of $\kappa_{2V}$. The bands surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section. The uncertainty band is smaller than the width of the plotted line.

More…

Version 2
Search for pair-production of vector-like quarks in $pp$ collision events at $\sqrt{s}=13$ TeV with at least one leptonically decaying $Z$ boson and a third-generation quark with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 138019, 2023.
Inspire Record 2172216 DOI 10.17182/hepdata.134010

A search for the pair-production of vector-like quarks optimized for decays into a $Z$ boson and a third-generation Standard Model quark is presented, using the full Run 2 dataset corresponding to 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV, collected in 2015-2018 with the ATLAS detector at the Large Hadron Collider. The targeted final state is characterized by the presence of a $Z$ boson with high transverse momentum, reconstructed from a pair of same-flavour leptons with opposite-sign charges, as well as by the presence of $b$-tagged jets and high-transverse-momentum large-radius jets reconstructed from calibrated smaller-radius jets. Events with exactly two or at least three leptons are used, which are further categorized by the presence of boosted $W$, $Z$, and Higgs bosons and top quarks. The categorization is performed using a neural-network-based boosted object tagger to enhance the sensitivity to signal relative to the background. No significant excess above the background expectation is observed and exclusion limits at 95% confidence level are set on the masses of the vector-like partners $T$ and $B$ of the top and bottom quarks, respectively. In the singlet model, the limits allow $m_T > 1.27$ TeV and $m_B > 1.20$ TeV. In the doublet model, allowed masses are $m_T > 1.46$ TeV and $m_B >1.32$ TeV. In the case of 100% branching ratio for $T\rightarrow Zt$ and 100% branching ratio for $B\rightarrow Zb$, the limits allow $m_T > 1.60$ TeV and $m_B > 1.42$ TeV, respectively.

20 data tables match query

Expected and observed lower limits on B masses at 95% CL in the BR plane from the combination of the two analysis channels for all BR configurations when assuming a total BR of 100% for H, W and Z.

Expected and observed lower limits on T masses at 95% CL in the BR plane from the combination of the two analysis channels for all BR configurations when assuming a total BR of 100% for H, W and Z.

Expected and observed combined limits at 95% CL on the production cross-section of vector-like T for 100% $T\rightarrow Zt$.

More…

Version 3
Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112010, 2021.
Inspire Record 1906174 DOI 10.17182/hepdata.104458

A search for charginos and neutralinos at the Large Hadron Collider is reported using fully hadronic final states and missing transverse momentum. Pair-produced charginos or neutralinos are explored, each decaying into a high-$p_{\text{T}}$ Standard Model weak boson. Fully-hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient background rejection by identifying the high-$p_{\text{T}}$ bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. The 95% confidence level exclusion limits are set on wino or higgsino production with varying assumptions in the decay branching ratios and the type of the lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest SUSY particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass wino and higgsino is significantly extended compared with the previous LHC searches using the other final states.

145 data tables match query

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Cutflow:</b> <a href="104458?version=3&table=Cut flows for the representative signals">table</a><br/><br/> <b>Boson tagging:</b> <ul> <li><a href="104458?version=3&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20efficiency">$W/Z\rightarrow qq$ tagging efficiency</a> <li><a href="104458?version=3&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20rejection">$W/Z\rightarrow qq$ tagging rejection</a> <li><a href="104458?version=3&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20efficiency">$Z/h\rightarrow bb$ tagging efficiency</a> <li><a href="104458?version=3&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20rejection">$Z/h\rightarrow bb$ tagging rejection</a> <li><a href="104458?version=3&table=%24W%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$W\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=3&table=%24W%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$W\rightarrow qq$ tagging rejection (vs official WP)</a> <li><a href="104458?version=3&table=%24Z%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=3&table=%24Z%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging rejection (vs official WP)</a> </ul> <b>Systematic uncertainty:</b> <a href="104458?version=3&table=Total%20systematic%20uncertainties">table</a><br/><br/> <b>Summary of SR yields:</b> <a href="104458?version=3&table=Data%20yields%20and%20background%20expectation%20in%20the%20SRs">table</a><br/><br/> <b>Expected background yields and the breakdown:</b> <ul> <li><a href="104458?version=3&table=Data%20yields%20and%20background%20breakdown%20in%20SR">CR0L / SR</a> <li><a href="104458?version=3&table=Data%20yields%20and%20background%20breakdown%20in%20CR%2FVR%201L(1Y)">CR1L / VR1L /CR1Y / VR1Y</a> </ul> <b>SR distributions:</b> <ul> <li><a href="104458?version=3&table=Effective mass distribution in SR-4Q-VV">SR-4Q-VV: Effective mass</a> <li><a href="104458?version=3&table=Leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Leading jet mass</a> <li><a href="104458?version=3&table=Leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Leading jet $D_{2}$</a> <li><a href="104458?version=3&table=Sub-leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet mass</a> <li><a href="104458?version=3&table=Sub-leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet $D_{2}$</a> <li><a href="104458?version=3&table=$m_{T2}$ distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: $m_{\textrm{T2}}$</a> <li><a href="104458?version=3&table=bb-tagged jet mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: bb-tagged jet mass</a> <li><a href="104458?version=3&table=Effective mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: Effective mass</a> <li><a href="104458?version=3&table=$m_{T2}$ distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: $m_{\textrm{T2}}$</a> <li><a href="104458?version=3&table=bb-tagged jet mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: bb-tagged jet mass</a> <li><a href="104458?version=3&table=Effective mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: Effective mass</a> </ul> <b>Exclusion limit:</b> <ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1C1-WW)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1C1-WW)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1N2-WZ)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1N2-WZ)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1N2-Wh)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1N2-Wh)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=0\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 0%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 0%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=25\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 25%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 25%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=75\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 75%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 75%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=100\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 100%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 100%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, H~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, H~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, W~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, W~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=3&table=Exp limit on (W~, H~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, H~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=3&table=Exp limit on (H~, W~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, W~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{G})$ model: <ul> <li><a href="104458?version=3&table=Exp limit on (H~, G~)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (H~, G~)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=100\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 100%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 100%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=75\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 75%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 75%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 50%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=25\%$): <ul> <li>Expected limit : (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 25%">Observed limit</a> </ul> </ul> <b>EWKino branching ratios:</b> <ul> <li>$(\tilde{W},~\tilde{H})$ model: <ul> <li><a href="104458?version=3&table=B(C2-%3EW%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=3&table=B(C2-%3EZ%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(C2-%3Eh%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EW%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EZ%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3Eh%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1,2}^{0})$</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model: <ul> <li><a href="104458?version=3&table=B(C2-%3EW%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(C2-%3EZ%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(C2-%3Eh%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N2-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N2-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N2-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> </ul> </ul> <b>Cross-section upper limit:</b> <ul> <li>Expected: <ul> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> <li>Observed: <ul> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> </ul> <b>Acceptance:</b> <ul> <li><a href="104458?version=3&table=Acceptance of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul> <b>Efficiency:</b> <ul> <li><a href="104458?version=3&table=Efficiency of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul>

Cut flows of some representative signals up to SR-4Q-VV, SR-2B2Q-VZ, and SR-2B2Q-Vh. One signal point from the $(\tilde{W},~\tilde{B})$ simplified models (C1C1-WW, C1N2-WZ, and C1N2-Wh) and $(\tilde{H},~\tilde{G})$ is chosen. The "preliminary event reduction" is a technical selection applied for reducing the sample size, which is fully efficient after the $n_{\textrm{Large}-R~\textrm{jets}}\geq 2$ selection.

The boson-tagging efficiency for jets arising from $W/Z$ bosons decaying into $q\bar{q}$ (signal jets) are shown. The signal jet efficiency of $W_{qq}$/$Z_{qq}$-tagging is evaluated using a sample of pre-selected large-$R$ jets ($p_{\textrm{T}}>200~\textrm{GeV}, |\eta|<2.0, m_{J} > 40~\textrm{GeV}$) in the simulated $(\tilde{W},\tilde{B})$ simplified model signal events with $\Delta m (\tilde{\chi}_{\textrm{heavy}},~\tilde{\chi}_{\textrm{light}}) \ge 400~\textrm{GeV}$. The jets are matched with generator-level $W/Z$-bosons by $\Delta R<1.0$ which decay into $q\bar{q}$. The efficiency correction factors are applied on the signal efficiency rejection for the $W_{qq}$/$Z_{qq}$-tagging. The systematic uncertainty is represented by the hashed bands.

More…

Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137848, 2023.
Inspire Record 2616326 DOI 10.17182/hepdata.140834

A measurement of the charge asymmetry in top-quark pair ($t\bar{t}$) production in association with a photon is presented. The measurement is performed in the single-lepton $t\bar{t}$ decay channel using proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-mass-energy of 13 TeV during the years 2015-2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be $A_\text{C}=-0.003 \pm 0.029$ in agreement with the Standard Model expectation.

4 data tables match query

The measured asymmetry of top quark pairs in $t\bar{t}\gamma$ production in a fiducial region at particle level.

Normalised differential cross section as a function of $|y(t)| - |y(\bar{t})|$. The observed data is compared with the SM expectation using aMC@NLO+Pythia8 at NLO QCD precision. The value of the charge asymmetry corresponds to the difference between the two bins. Underflow and overflow events are included in corresponding bins of the distribution.

Definition of the fiducial phase space at particle level. where, $\gamma$: photon $\ell$: lepton j: jet

More…