Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in $\sqrt{s} = 8$ TeV proton-proton collisions

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2016) 175, 2016.
Inspire Record 1478981 DOI 10.17182/hepdata.73787

A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use $20\,{\rm fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino--higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass $m(\tilde{\chi}^0_1)$ of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger $m(\tilde{\chi}^0_1)$ due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.

0 data tables match query

Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 - interpreted in the phenomenological MSSM

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2015) 134, 2015.
Inspire Record 1389857 DOI 10.17182/hepdata.69233

A summary of the constraints from the ATLAS experiment on $R$-parity conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb$^{-1}$ of proton-proton collision data at the centre-of-mass energy of $\sqrt{s}$ = 7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. Spectra for surviving supersymmetry model points with low fine-tunings are presented.

0 data tables match query

Further search for supersymmetry at sqrt(s) = 7 TeV in final states with jets, missing transverse momentum and isolated leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 86 (2012) 092002, 2012.
Inspire Record 1180197 DOI 10.17182/hepdata.1220

This work presents a new inclusive search for supersymmetry (SUSY) by the ATLAS experiment at the LHC in proton-proton collisions at a center-of-mass energy sqrt(s) = 7 TeV in final states with jets, missing transverse momentum and one or more isolated electrons and/or muons. The search is based on data from the full 2011 data-taking period, corresponding to an integrated luminosity of 4.7 inverse fb. Single- and multi-lepton channels are treated together in one analysis. An increase in sensitivity is obtained by simultaneously fitting the number of events in statistically independent signal regions, and the shapes of distributions within those regions. A dedicated signal region is introduced to be sensitive to decay cascades of SUSY particles with small mass differences ("compressed SUSY"). Background uncertainties are constrained by fitting to the jet multiplicity distribution in background control regions. Observations are consistent with Standard Model expectations, and limits are set or extended on a number of SUSY models.

0 data tables match query

Search for Diphoton Events with Large Missing Transverse Energy with 36 pb$^{-1}$ of 7 TeV Proton-Proton Collision Data with the {ATLAS} Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1744, 2011.
Inspire Record 916840 DOI 10.17182/hepdata.58302

Making use of 36 pb^-1 of proton-proton collision data at sqrt{s} = 7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level (CL) upper limit is set on the cross section for new physics of sigma < 0.38 - 0.65 pb in the context of a generalised model of gauge mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of sigma < 0.18 - 0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95 % CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a lower limit of 1/R > 961 GeV is set on the UED compactification radius R. These limits provide the most stringent tests of these models to date.

0 data tables match query

Evidence for the Higgs boson decay to a $Z$ boson and a photon at the LHC

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 021803, 2024.
Inspire Record 2666787 DOI 10.17182/hepdata.142406

The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

1 data table match query

The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.


Searches for exclusive Higgs boson decays into $D^*\gamma$ and $Z$ boson decays into $D^0\gamma$ and $K^0_s\gamma$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-037, 2024.
Inspire Record 2763131 DOI 10.17182/hepdata.147194

Searches for the exclusive decays of the Higgs boson into $D^*\gamma$ and of the $Z$ boson into $D^0\gamma$ and $K^0_s\gamma$ can probe flavour-violating Higgs and $Z$ boson couplings to light quarks. Searches for these decays are performed with a $pp$ collision data sample corresponding to an integrated luminosity of $136.3$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV between 2016-2018 with the ATLAS detector at the CERN Large Hadron Collider. In the $D^*\gamma$ and $D^0\gamma$ channels, the observed (expected) 95$\%$ confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow D^*\gamma)< 1.0 (1.2)\times 10^{-3}$, ${\cal B}(Z\rightarrow D^0\gamma)< 4.0 (3.4)\times 10^{-6}$, while the corresponding results in the $K^0_s\gamma$ channel are ${\cal B}(Z\rightarrow K^0_s\gamma)< 3.1 (3.0)\times 10^{-6}$.

2 data tables match query

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty is obtained by integrating the total pdf after a background-only fit to the data, where the uncertainty does not take into account statistical fluctuations in each mass range. Expected Higgs and $Z$ boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-3}$ and $10^{-6}$, respectively. Entries are marked with a dash when there is no signal of that type in the specified range.

Observed and expected (with the corresponding $\pm1\sigma$ intervals) 95% CL upper limits on the branching fractions for $H\rightarrow D^*\gamma$, $Z\rightarrow D^0\gamma$ and $Z\rightarrow K^0_s\gamma$. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross-section times branching fraction $\sigma\times\mathcal{B}$ are also shown.


Search for flavour-changing neutral-current couplings between the top quark and the Higgs boson in multi-lepton final states in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-070, 2024.
Inspire Record 2773613 DOI 10.17182/hepdata.150998

A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.

53 data tables match query

Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.

Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.

Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.

More…

Search for pair production of boosted Higgs bosons via vector-boson fusion in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-092, 2024.
Inspire Record 2781483 DOI 10.17182/hepdata.150977

A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime, where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between two vector bosons and two Higgs bosons relative to its Standard Model prediction, $\kappa_{2V}$. This study constrains $\kappa_{2V}$ to $0.55 < \kappa_{2V} < 1.49$ at 95% confidence level. The value $\kappa_{2V} = 0$ is excluded with a significance of 3.8 standard deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0 resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass range of 1-5 TeV for the first time under several model and decay-width assumptions. No significant deviation from the Standard Model hypothesis is observed and exclusion limits at 95% confidence level are derived.

23 data tables match query

The mass planes of the reconstructed Higgs boson candidates for the 1Pass selections of the analysis, shown for the data events.

The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the data events.

The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the VBF SM $\kappa_{2V} = 1$ HH samples.

More…

Measurements of multijet event isotropies using optimal transport with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 10 (2023) 060, 2023.
Inspire Record 2663035 DOI 10.17182/hepdata.110164

A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.

75 data tables match query

IRing2 for HT2>=500 GeV, NJets>=2

IRing2 for HT2>=500 GeV, NJets>=3

IRing2 for HT2>=500 GeV, NJets>=4

More…

Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

22 data tables match query

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

More…