Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.
A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model.
Summary of the impact of the systematic uncertainties on the extracted signal strength; for the case of a background-only simulated data set, i.e., assuming no contributions from the $\mathrm{H}^{\pm}$ and $\mathrm{H}^{\pm\pm}$ processes, and including a charged Higgs boson signal for values of $s_{\mathrm{H}}=1.0$ and $m_{\mathrm{H}_{5}}=500$ GeV in the GM model.
Expected signal and background yields from various SM processes and observed data events in all regions used in the analysis. The expected background yields are shown with their normalizations from the simultaneous fit for the background-only hypothesis, i.e., assuming no contributions from the $\mathrm{H}^{\pm}$ and $\mathrm{H}^{\pm\pm}$ processes. The expected signal yields are shown for $s_{\mathrm{H}}=1.0$ in the GM model. The combination of the statistical and systematic uncertainties is shown.
Distributions for signal, backgrounds, and data for the bins used in the simultaneous fit. The bins 1--32 (4$\times$8) show the events in the WW SR ($m_{\mathrm{jj}} \times m_{\mathrm{T}}$), the bins 33--46 (2$\times$7) show the events in the WZ SR ($m_{\mathrm{jj}} \times m_{\mathrm{T}}$), the 4 bins 47--50 show the events in the nonprompt lepton CR ($m_{\mathrm{jj}}$), the 4 bins 51--54 show the events in the tZq CR ($m_{\mathrm{jj}}$), and the 4 bins 55--58 show the events in the ZZ CR ($m_{\mathrm{jj}}$). The predicted yields are shown with their best fit normalizations from the simultaneous fit for the background-only hypothesis, i.e., assuming no contributions from the $\mathrm{H}^{\pm}$ and $\mathrm{H}^{\pm\pm}$ processes. Vertical bars on data points represent the statistical uncertainty in the data. The histograms for tVx backgrounds include the contributions from ttV and tZq processes. The histograms for other backgrounds include the contributions from double parton scattering, VVV, and from oppositely charged dilepton final states from tt, tW, $\mathrm{W}^{+}\mathrm{W}^{-}$, and Drell--Yan processes. The overflow is included in the last bin in each corresponding region. The lower panels show the ratio of the number of events observed in data to that of the total SM prediction. The hatched gray bands represent the uncertainties in the predicted yields. The solid lines show the signal predictions for values of $s_{\mathrm{H}}=1.0$ and $m_{\mathrm{H}_{5}}=500$ GeV in the GM model.
Studies of $CP$ violation and anomalous couplings of the Higgs boson to vector bosons and fermions are presented. The data were acquired by the CMS experiment at the LHC and correspond to an integrated luminosity of 137 fb$^{-1}$ at a proton-proton collision energy of 13 TeV. The kinematic effects in the Higgs boson's four-lepton decay H $\to$ 4$\ell$ and its production in association with two jets, a vector boson, or top quarks are analyzed, using a full detector simulation and matrix element techniques to identify the production mechanisms and to increase sensitivity to the Higgs boson tensor structure of the Higgs boson interactions. A simultaneous measurement is performed of up to five Higgs boson couplings to electroweak vector bosons (HVV), two couplings to gluons (Hgg), and two couplings to top quarks (Htt). The $CP$ measurement in the Htt interaction is combined with the recent measurement in the H $\to$$\gamma\gamma$ channel. The results are presented in the framework of anomalous couplings and are also interpreted in the framework of effective field theory, including the first study of $CP$ properties of the Htt and effective Hgg couplings from a simultaneous analysis of the gluon fusion and top-associated processes. The results are consistent with the standard model of particle physics.
Example description
Example description
Example description
A search is presented for lepton-flavor violating decays of the Higgs boson to $\mu\tau$ and e$\tau$. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$ collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, $\mathcal{B}($H $\to\mu\tau)$$\lt$ 0.15 (0.15)% and $\mathcal{B}($H$\to$e$\tau)$ $\lt$ 0.22 (0.16)% at 95% confidence level.
Observed (expected) 95% CL upper limits on $B(H\to\mu\tau)$ for each individual category and combined
Observed (expected) 95% CL upper limits on $B(H\to e\tau)$ for each individual category and combined
Summary of observed and expected upper limits at 95% CL, best fit branching fractions and corresponding constraints on Yukawa couplings for the $H\to\mu\tau$ and $H\to e\tau$ channels
The cross section for W or Z boson production in association with two photons is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS experiment at the LHC. The W $\to$$\ell\nu$ and Z $\to$$\ell\ell$ decay modes (where $\ell =$ e, $\mu$) are used to extract the W$\gamma\gamma$ and Z$\gamma\gamma$ cross sections in a phase space defined by electron (muon) with transverse momentum larger than 30 GeV and photon transverse momentum larger than 20 GeV. All leptons and photons are required to have absolute pseudorapidity smaller than 2.5. The measured cross sections in this phase space are $\sigma$(W$\gamma\gamma$) = 13.6 $^{+1.9}_{-1.9}$ (stat) ${}^{+4.0}_{-4.0}$ (syst) $\pm$ 0.08 (PDF + scale) fb and $\sigma$(Z$\gamma\gamma$) = 5.41 $^{+0.58}_{-0.55}$ (stat) ${}^{+0.64}_{-0.70}$ (syst) $\pm$ 0.06 (PDF + scale) fb. Limits on anomalous quartic gauge couplings are set in the framework of an effective field theory with dimension-8 operators.
Distribution of the transverse momentum of the diphoton system for the $\mathrm{W}\gamma\gamma$ electron channel. The predicted yields are shown with their pre-fit normalisations. The observed data, the expected signal contribution and the background estimates are presented with error bars showing the corresponding statistical uncertainties.
Distribution of the transverse momentum of the diphoton system for the $\mathrm{W}\gamma\gamma$ muon channel. The predicted yields are shown with their pre-fit normalisations. The observed data, the expected signal contribution and the background estimates are presented with error bars showing the corresponding statistical uncertainties.
Distribution of the transverse momentum of the diphoton system for the $\mathrm{Z}\gamma\gamma$ electron channel. The predicted yields are shown with their pre-fit normalisations. The observed data, the expected signal contribution and the background estimates are presented with error bars showing the corresponding statistical uncertainties.
A search for a heavy Higgs boson H decaying into the observed Higgs boson h with a mass of 125 GeV and another Higgs boson h$_\mathrm{S}$ is presented. The h and h$_\mathrm{S}$ bosons are required to decay into a pair of tau leptons and a pair of b quarks, respectively. The search uses a sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. Mass ranges of 240-3000 GeV for $m_\mathrm{H}$ and 60-2800 GeV for $m_\mathrm{h_S}$ are explored in the search. No signal has been observed. Model independent 95% confidence level upper limits on the product of the production cross section and the branching fractions of the signal process are set with a sensitivity ranging from 125 fb (for $m_\mathrm{H}$ $=$ 240 GeV) to 2.7 fb (for $m_\mathrm{H}$ $=$ 1000 GeV). These limits are compared to maximally allowed products of the production cross section and the branching fractions of the signal process in the next-to-minimal supersymmetric extension of the standard model.
Expected and observed exclusion limits for heavy higgs boson mass 240 GeV
Expected and observed exclusion limits for heavy higgs boson mass 280 GeV
Expected and observed exclusion limits for heavy higgs boson mass 320 GeV
The first observation of the electroweak (EW) production of a Z boson, a photon, and two forward jets (Z$\gamma$jj) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. A data set corresponding to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC in 2016-2018 is used. The measured fiducial cross section for EW Z$\gamma$jj is $\sigma_{\mathrm{EW}}$ = 5.21 $\pm$ 0.52 (stat) $\pm$ 0.56 (syst) fb = 5.21 $\pm$ 0.76 fb. Single-differential cross sections in photon, leading lepton, and leading jet transverse momenta, and double-differential cross sections in $m_{\mathrm{jj}}$ and $\lvert\Delta\eta_{\mathrm{jj}}\rvert$ are also measured. Exclusion limits on anomalous quartic gauge couplings are derived at 95% confidence level in terms of the effective field theory operators $\mathrm{M}_{0}$ to $\mathrm{M}_{5}$, $\mathrm{M}_{7}$, $\mathrm{T}_{0}$ to $\mathrm{T}_{2}$, and $\mathrm{T}_{5}$ to $\mathrm{T}_{9}$.
The measured inclusive fiducial cross section for the pure electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.
The measured inclusive fiducial cross section for the combined QCD-induced and electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.
The measured single-differential cross sections in photon transverse momenta for the pure electroweak Z$\gamma$jj production. The total uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO. The last bin includes overflow events.
The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302 pb$^{-1}$. Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as $\sigma_\mathrm{WW} =$ 37.0 $^{+5.5}_{-5.2}$ (stat) $^{+2.7}_{-2.6}$ (syst) pb, $\sigma_\mathrm{WZ} =$ 6.4 $^{+2.5}_{-2.1}$ (stat) $^{+0.5}_{-0.3}$ (syst) pb, and $\sigma_\mathrm{ZZ} =$ 5.3 $^{+2.5}_{-2.1}$ (stat) $^{+0.5}_{-0.4}$ (syst) pb. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy.
Expected event yields in the WW SR and observed number of events. The uncertainties correspond to the statistical and systematic component, respectively.
Expected event yields for the signal and total background in the WZ and ZZ SRs, and observed number of events. The uncertainties correspond to the statistical and systematic component, respectively.
Distribution of the dilepton pT in the WW signal region. Events from DY, conversions, and diboson processes are grouped into the 'Others' category. The vertical error bars represent the statistical uncertainty in the data and the shaded band the uncertainty in the prediction. The signal contributions are scaled to the measured cross sections (postfit).
The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.
Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.
Distribution of $m_{T}(W)$ in the $N_{jet}\geq 3$ signal region.
Distribution of $M_{3}$ in the $N_{jet}\geq 3$ signal region.
A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the endcap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and $\tau^+\tau^-$ are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 7 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 15 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 40 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.