A measurement is presented of electroweak (EW) production of a W boson in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data sample was recorded by the CMS Collaboration at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed for the $\ell\nu$jj final state (with $\ell\nu$ indicating a lepton-neutrino pair, and j representing the quarks produced in the hard interaction) in a kinematic region defined by invariant mass $m_\mathrm{jj}$ $>$ 120 GeV and transverse momenta $p_\mathrm{T j}$ $>$ 25 GeV. The cross section of the process is measured in the electron and muon channels yielding $\sigma_\mathrm{EW}$(Wjj) = 6.23 $\pm$ 0.12 (stat) $\pm$ 0.61 (syst) pb per channel, in agreement with leading-order standard model predictions. The additional hadronic activity of events in a signal-enriched region is studied, and the measurements are compared with predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. Limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are $-$2.3 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.5 TeV$^{-2}$, $-$8.8 $<$ $c_{\mathrm{W}}/\Lambda^2$ $<$ 16 TeV$^{-2}$, and $-$45 $<$ $c_{\mathrm{B}}/\Lambda^2$ $<$ 46 TeV$^{-2}$. These results are combined with the CMS EW Zjj analysis, yielding the constraint on the $c_{\mathrm{WWW}}$ coupling: $-$1.8 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.0 TeV$^{-2}$.
Transformed BDT output distribution after the event preselection, in the muon channel.
Transformed BDT output distribution after the event preselection, in the electron channel.
Muon pT in data and SM backgrounds, and various aTGC scenarios after the event preselection, in the muon channel.
A measurement of jet substructure variables is presented using data collected in 2016 by the ATLAS experiment at the LHC with proton-proton collisions at $\sqrt{s}=13$ TeV. Large-radius jets groomed with the trimming and soft-drop algorithms are studied. Dedicated event selections are used to study jets produced by light quarks or gluons, and hadronically decaying top quarks and $W$ bosons. The variables measured are sensitive to pronged substructure, and therefore are typically used for tagging jets from boosted massive particles. These include the energy correlation functions and the $N$-subjettiness variables. The number of subjets and the Les Houches angularity are also considered. The distributions of the substructure variables, corrected for detector effects, are compared to the predictions of various Monte Carlo event generators. They are also compared between the large-radius jets originating from light quarks or gluons, and hadronically decaying top quarks and $W$ bosons.
Figure 3a, Normalised differential Nsubjets distribution for soft-drop groomed jets, Dijet selection.
Figure 4a, Normalised differential LHA distribution for soft-drop groomed jets, Dijet selection
Figure 5a, Normalised differential C2 distribution for soft-drop groomed jets, Dijet selection