Measurement of the differential cross-sections of prompt and non-prompt production of $J/\psi$ and $\psi(2\mathrm{S})$ in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 283, 2016.
Inspire Record 1409298 DOI 10.17182/hepdata.72721

The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.

40 data tables

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 8 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 191802, 2015.
Inspire Record 1345023 DOI 10.17182/hepdata.66886

The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.

5 data tables

J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.

More…

Measurement of the inclusive jet cross-section in proton-proton collisions at $\sqrt{s}=7$ TeV using 4.5 fb$^{-1}$ of data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 02 (2015) 153, 2015.
Inspire Record 1325553 DOI 10.17182/hepdata.69343

The inclusive jet cross-section is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-$k_t$ algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed.

12 data tables

Measured double-differential inclusive-jet cross section for the range 0.0 <= |y| < 0.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 0.5 <= |y| < 1.0 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 1.0 <= |y| < 1.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

More…

Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in $pp$ collisions at $\sqrt{s}$ = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3117, 2014.
Inspire Record 1307243 DOI 10.17182/hepdata.66091

Additional jet activity in dijet events is measured using $pp$ collisions at ATLAS at a centre-of-mass energy of 7 TeV, for jets reconstructed using the anti-kt algorithm with radius parameter R=0.6. This is done using variables such as the fraction of dijet events without an additional jet in the rapidity interval bounded by the dijet subsystem and correlations between the azimuthal angles of the dijets. They are presented, both with and without a veto on additional jet activity in the rapidity interval, as a function of the mean transverse momentum of the dijets and of the rapidity interval size. The double differential dijet cross section is also measured as a function of the interval size and the azimuthal angle between the dijets. These variables probe differences in the approach to resummation of large logarithms when performing QCD calculations. The data are compared to POWHEG, interfaced to the PYTHIA 8 and HERWIG parton shower generators, as well as to HEJ with and without interfacing it to the ARIADNE parton shower generator. None of the theoretical predictions agree with the data across the full phase-space considered; however, POWHEG+PYTHIA 8 and HEJ+ARIADNE are found to provide the best agreement with the data.These measurements use the full data sample collected with the ATLAS detector in 7 TeV $pp$ collisions at the LHC and correspond to integrated luminosities of 36.1 pb$^-1$ and 4.5 fb$^-1$ for data collected during 2010 and 2011 respectively.

40 data tables

Gap fraction as a function of leading dijet rapidity separation.

Gap fraction as a function of leading dijet scalar mean pT in GeV.

Mean number of jets in rapidity interval as a function of leading dijet rapidity separation.

More…

Measurement of the ratio of inclusive jet cross sections using the anti-kt algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 072006, 2014.
Inspire Record 1298810 DOI 10.17182/hepdata.68020

Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.

18 data tables

Inclusive Jet cross section with R = 0.5 in the rapidity bin 0 < |y| < 0.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.

Inclusive Jet cross section with R = 0.5 in the rapidity bin 0.5 < |y| < 1. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.

Inclusive Jet cross section with R = 0.5 in the rapidity bin 1 < |y| < 1.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.

More…

Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 059, 2014.
Inspire Record 1268975 DOI 10.17182/hepdata.62289

Double-differential dijet cross sections measured in pp collisions at the LHC with a 7 TeV centre-of-mass energy are presented as functions of dijet mass and rapidity separation of the two highest-pT jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5/fb, recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross sections are presented at the particle level. Cross sections are measured up to 5 TeV dijet mass using jets reconstructed with the anti-kt algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross sections are compared with next-to-leading-order perturbative QCD calculations by NLOJET++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a parton-shower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.

12 data tables

Measured double-differential dijet cross sections for the range 0.0 <= y* < 0.5 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured double-differential dijet cross sections for the range 0.5 <= y* < 1.0 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured double-differential dijet cross sections for the range 1.0 <= y* < 1.5 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

More…

Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 12 (2013) 030, 2013.
Inspire Record 1262319 DOI 10.17182/hepdata.62207

Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5(4.8) inverse femtobarns in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at $\sqrt{s}$ = 7 TeV. The measured inclusive cross section in the Z-peak region (60-120 GeV) is $\sigma(\ell \ell)$ = 986.4 +/- 0.6 (stat.) +/- 5.9 (exp. syst.) +/- 21.7 (th. syst.) +/- 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections $d\sigma/dm$ for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section $d^2\sigma/dm d |y|$ in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.

10 data tables

Normalization factors for the cross section measurements from the Z-peak region (60 < M < 120 GeV) with associated uncertainties. The measurements are given in the muon, electron and combined channels. The three systematic uncertainties correspond to experimental, theoretical and luminosity.

The DY cross section measurements for the muon channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

The DY cross section measurements for the electron channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

More…

Measurement of the differential cross-section of $B^{+}$ meson production in pp collisions at $\sqrt{s}$ = 7 TeV at ATLAS

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 10 (2013) 042, 2013.
Inspire Record 1240670 DOI 10.17182/hepdata.61591

The production cross-section of B+ mesons is measured as a function of transverse momentum pT and rapidity y in proton--proton collisions at center-of-mass energy sqrt(s) = 7 TeV, using 2.4 fb-1 of data recorded with the ATLAS detector at the Large Hadron Collider. The differential production cross-sections, determined in the range 9<pT<120 GeV and y<2.25, are compared to next-to-leading-order theoretical predictions.

6 data tables

Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range |y|<0.5. The first quoted uncertainty is statistical, the second uncertainty is systematic.

Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range 0.5<|y|<1. The first quoted uncertainty is statistical, the second uncertainty is systematic.

Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range 1<|y|<1.5 The first quoted uncertainty is statistical, the second uncertainty is systematic.

More…

Measurement of B meson production cross-sections in proton-proton collisions at sqrt(s)= 7 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
JHEP 08 (2013) 117, 2013.
Inspire Record 1238809 DOI 10.17182/hepdata.74446

The production cross-sections of B mesons are measured in pp collisions at a centre-of-mass energy of 7 TeV, using data collected with the LHCb detector corresponding to a integrated luminosity of 0.36 fb-1. The B+, B0 and Bs0 mesons are reconstructed in the exclusive decays B+ -> J/psi K+, B0 -> J/psi K*0 and Bs0 -> J/psi phi, with J/psi -> mu+ mu-, K*0 -> K+ pi- and phi -> K+ K-. The differential cross-sections are measured as functions of B meson transverse momentum pT and rapidity y, in the range 0 < pT < 40 GeV/c and 2.0 < y < 4.5. The integrated cross-sections in the same pT and y ranges, including charge-conjugate states, are measured to be sigma(pp -> B+ + X) = 38.9 +- 0.3 (stat.) +- 2.5 (syst.) +- 1.3 (norm.) mub, sigma(pp -> B0 + X) = 38.1 +- 0.6 (stat.) +- 3.7 (syst.) +- 4.7 (norm.) mub, sigma(pp -> Bs0 + X) = 10.5 +- 0.2 (stat.) +- 0.8 (syst.) +- 1.0 (norm.) mub, where the third uncertainty arises from the pre-existing branching fraction measurements.

10 data tables

Integrated cross sections for B mesons in the defined kinematic range. The second (sys) uncertainty is the normalisation uncertainty arising from the pre-existing branching fraction measurements.

Double Differential distributions for B0 production.

Double differential distributions for B+ production.

More…

Measurement of the inclusive jet cross section in pp collisions at sqrt(s)=2.76 TeV and comparison to the inclusive jet cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2509, 2013.
Inspire Record 1228693 DOI 10.17182/hepdata.61627

The inclusive jet cross-section has been measured in proton-proton collisions at sqrt(s)=2.76 TeV in a dataset corresponding to an integrated luminosity of 0.20pb-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-kt algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum pT and jet rapidity y, covering a range of 20 <= pT < 430 GeV and |y| < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at sqrt(s)=7 TeV, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity xT = 2 pT / sqrt(s), in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at sqrt(s)=2.76 TeV and sqrt(s)=7 TeV are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.

42 data tables

The measured inclusive jet double-differential cross section in the rapidity bin |y| < 0.3 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

The measured inclusive jet double-differential cross section in the rapidity bin 0.3 <= |y| < 0.8 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

The measured inclusive jet double-differential cross section in the rapidity bin 0.8 <= |y| < 1.2 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

More…