Search for supersymmetry in final states with a single electron or muon using angular correlations and heavy-object identification in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2023) 149, 2023.
Inspire Record 2182749 DOI 10.17182/hepdata.135454

A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ($\mathrm{t\bar{t}}$) pair, or a light-flavor quark-antiquark ($\mathrm{q\bar{q}}$) pair and a virtual or on-shell W boson. The main backgrounds, $\mathrm{t\bar{t}}$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a $\mathrm{t\bar{t}}$ pair (a $\mathrm{q\bar{q}}$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.

0 data tables match query

Search for electroweak production of vector-like leptons in $\tau$-lepton and $b$-jet final states in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 1335, 2025.
Inspire Record 2905977 DOI 10.17182/hepdata.158820

A search for pair-production of vector-like leptons is presented, considering their decays into a third-generation Standard Model (SM) quark and a vector leptoquark ($U_1$) as predicted by an ultraviolet-complete extension of the SM, referred to as the '4321' model. Given the assumed decay of $U_1$ into third-generation SM fermions, the final state can contain multiple $τ$-leptons and $b$-quarks. This search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. No significant excess above the SM background prediction is observed, and 95% confidence level limits on the cross-section times branching ratio are derived as a function of the vector-like lepton mass. A lower observed (expected) limit of 910 GeV (970 GeV) is set on the vector-like lepton mass. Additionally, the results are interpreted for a supersymmetric model with an $R$-parity violating coupling to the third-generation quarks and leptons. Lower observed (expected) limits are obtained on the higgsino mass at 880 GeV (940 GeV) and on the wino mass at 1170 GeV (1170 GeV).

0 data tables match query

Version 3
Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 83 (2023) 1082, 2023.
Inspire Record 2694205 DOI 10.17182/hepdata.145637

A new measurement of inclusive-jet cross sections in the Breit frame in neutral current deep inelastic scattering using the ZEUS detector at the HERA collider is presented. The data were taken in the years 2004 to 2007 at a centre-of-mass energy of $318\,\text{GeV}$ and correspond to an integrated luminosity of $347\,\text{pb}^{-1}$. Massless jets, reconstructed using the $k_t$-algorithm in the Breit reference frame, have been measured as a function of the squared momentum transfer, $Q^2$, and the transverse momentum of the jets in the Breit frame, $p_{\perp,\text{Breit}}$. The measured jet cross sections are compared to previous measurements and to perturbative QCD predictions. The measurement has been used in a next-to-next-to-leading-order QCD analysis to perform a simultaneous determination of parton distribution functions of the proton and the strong coupling, resulting in a value of $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017~\text{(experimental/fit)}$${}^{+0.0006}_{-0.0007}~\text{(model/parameterisation)}$${}^{+0.0006}_{-0.0004}~\text{(scale)}$, whose accuracy is improved compared to similar measurements. In addition, the running of the strong coupling is demonstrated using data obtained at different scales.

0 data tables match query

Search for long-lived particles decaying to leptons with large impact parameter in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 82 (2022) 153, 2022.
Inspire Record 1940976 DOI 10.17182/hepdata.113658

A search for new long-lived particles decaying to leptons using proton-proton collision data produced by the CERN LHC at $\sqrt{s}$ = 13 TeV is presented. Events are selected with two leptons (an electron and a muon, two electrons, or two muons) that both have transverse impact parameter values between 0.01 and 10 cm and are not required to form a common vertex. Data used for the analysis were collected with the CMS detector in 2016, 2017, and 2018, and correspond to an integrated luminosity of 118 (113) fb$^{-1}$ in the ee channel (e$\mu$ and $\mu\mu$ channels). The search is designed to be sensitive to a wide range of models with displaced e$\mu$, ee, and $\mu\mu$ final states. The results constrain several well-motivated models involving new long-lived particles that decay to displaced leptons. For some areas of the available phase space, these are the most stringent constraints to date.

0 data tables match query

Version 2
Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 142, 2022.
Inspire Record 1972986 DOI 10.17182/hepdata.115022

A measurement of the inclusive jet production in proton-proton collisions at the LHC at $\sqrt{s}$ = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum $p_\mathrm{T}$ and the absolute jet rapidity $\lvert y \rvert$. The anti-$k_\mathrm{T}$ clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet $p_\mathrm{T}$ from 97 GeV up to 3.1 TeV and $\lvert y \rvert\lt$ 2.0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb$^{-1}$ (33.5 fb$^{-1}$). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as $\alpha_\mathrm{S}$(Z) = 0.1170 $\pm$ 0.0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient $c_1$ of 4-quark contact interactions. Note added: in the Addendum to this paper, available as Appendix B in this document, an improved value of $\alpha_\mathrm{S}$(Z) = 0.1166 $\pm$ 0.0017 has been extracted. This result supersedes the number in the above abstract of the original publication.

0 data tables match query

Search for dark matter produced in association with a single top quark and an energetic $W$ boson in $\sqrt{s}=$ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 603, 2023.
Inspire Record 2514114 DOI 10.17182/hepdata.136029

This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.

0 data tables match query

Vector boson scattering and anomalous quartic couplings in final states with $\ellν$qq or $\ell\ell$qq plus jets using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-22-011, 2025.
Inspire Record 3006061 DOI 10.17182/hepdata.165281

A measurement is presented of the electroweak vector boson scattering production of ZV (V = W, Z) boson pairs associated with two jets in proton-proton collisions at a center-of-mass energy of 13 TeV. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected at the CERN LHC with the CMS detector during the 2016$-$2018 data-taking period. The analysis targets final states with a pair of isolated electrons or muons from Z boson decays and three or four jets, depending on the momentum of the vector boson that decays into quarks. Signal strength is measured for events characterized by a large invariant mass of two forward jets with a wide pseudorapidity gap between them. The electroweak production of ZV in association with two jets is measured with an observed (expected) significance of 1.3 (1.8) standard deviations. A combination of the analyses of ZV channel and the previously published WV channel in the lepton plus jets final state places constraints on effective field theory parameters that describe anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets. Several world best limits are set on anomalous quartic gauge couplings in terms of dimension-8 standard model effective field theory operators.

0 data tables match query

Version 2
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 153, 2021.
Inspire Record 1894408 DOI 10.17182/hepdata.106115

A search is presented for new particles produced at the LHC in proton-proton collisions at $\sqrt{s} =$ 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb$^{-1}$, collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb$^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.

0 data tables match query

Search for resonant leptoquark production via lepton-jet signatures in $pp$ collisions at $\sqrt{s} = 13$ TeV and $\sqrt{s} = 13.6$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-142, 2025.
Inspire Record 2943627 DOI 10.17182/hepdata.166328

This paper presents a search for physics beyond the Standard Model targeting a heavy resonance visible in the invariant mass of the lepton-jet system. The analysis focuses on final states with a high-energy lepton and jet, and is optimised for the resonant production of leptoquarks-a novel production mode mediated by the lepton content of the proton originating from quantum fluctuations. Four distinct and orthogonal final states are considered: $e$+light jet, $μ$+light jet, $e$+$b$-jet, and $μ$+$b$-jet, constituting the first search at the Large Hadron Collider for resonantly produced leptoquarks with couplings to electrons and muons. Events with an additional same-flavour lepton, as expected from higher-order diagrams in the signal process, are also included in each channel. The search uses proton-proton collision data from the full Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, and from a part of Run 3 (2022-2023), corresponding to 55 fb$^{-1}$ at $\sqrt{s} = 13.6$ TeV. No significant excess over Standard Model predictions is observed. The results are interpreted as exclusion limits on scalar leptoquark ($\tilde{S}_1$) production, substantially improving upon previous ATLAS constraints from leptoquark pair production for large coupling values. The excluded $\tilde{S}_1$ mass ranges depend on the coupling strength, reaching up to 3.4 TeV for quark-lepton couplings $y_{de} = 1.0$, and up to 4.3 TeV, 3.1 TeV, and 2.8 TeV for $y_{sμ}$, $y_{be}$, and $y_{bμ}$ couplings set to 3.5, respectively.

0 data tables match query

Version 2
Search for electroweak production of charginos and neutralinos at $\sqrt{s}$ =13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137460, 2023.
Inspire Record 2085373 DOI 10.17182/hepdata.127766

This Letter presents a search for direct production of charginos and neutralinos via electroweak interactions. The results are based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The search considers final states with large missing transverse momentum and pairs of hadronically decaying bosons WW, WZ, and WH, where H is the Higgs boson. These bosons are identified using novel algorithms. No significant excess of events is observed relative to the expectations from the standard model. Limits at the 95% confidence level are placed on the cross section for production of mass-degenerate wino-like supersymmetric particles $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$, and mass-degenerate higgsino-like supersymmetric particles $\tilde{\chi}_1^\pm$, $\tilde{\chi}_2^0$, and $\tilde{\chi}_3^0$. In the limit of a nearly-massless lightest supersymmetric particle $\tilde{\chi}_1^0$, wino-like particles with masses up to 870 and 960 GeV are excluded in the cases of $\tilde{\chi}_2^0$ $\to$ Z$\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ $\to$ H$\tilde{\chi}_1^0$, respectively, and higgsino-like particles are excluded between 300 and 650 GeV.

0 data tables match query