Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 136-157, 2016.
Inspire Record 1468168 DOI 10.17182/hepdata.73120

This paper describes a measurement of the inclusive top quark pair production cross-section ($\sigma_{t\bar{t}}$) with a data sample of 3.2 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron--muon pair in the final state. Jets containing $b$-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two $b$-tagged jets are counted and used to determine simultaneously $\sigma_{t\bar{t}}$ and the efficiency to reconstruct and $b$-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: $\sigma_{t\bar{t}}$= 818 $\pm$ 8 (stat) $\pm$ 27 (syst) $\pm$ 19 (lumi) $\pm$ 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.

0 data tables match query

Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 117 (2016) 182002, 2016.
Inspire Record 1468167 DOI 10.17182/hepdata.74822

This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

0 data tables match query

Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 048, 2019.
Inspire Record 1720442 DOI 10.17182/hepdata.84818

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\rightarrow ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

0 data tables match query

Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of $Z$ bosons in association with a high-energy photon ($Z\gamma$ production) is studied in the neutrino decay channel of the $Z$ boson using $pp$ collisions at $\sqrt{s}$ = 13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate $Z\gamma$ events with invisible decays of the $Z$ boson are selected by requiring significant transverse momentum ($p_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy ($E_{T}$). The rate of $Z\gamma$ production is measured as a function of photon $E_{T}$, dineutrino system $p_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in $Z\gamma$ production with photon $E_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

0 data tables match query

Observation of electroweak $W^{\pm}Z$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 793 (2019) 469-492, 2019.
Inspire Record 1711223 DOI 10.17182/hepdata.83785

An observation of electroweak $W^{\pm}Z$ production in association with two jets in proton-proton collisions is presented. The data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV are used, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events containing three identified leptons, either electrons or muons, and two jets are selected. The electroweak production of $W^{\pm}Z$ bosons in association with two jets is measured with an observed significance of 5.3 standard deviations. A fiducial cross-section for electroweak production including interference effects is measured to be $\sigma_{WZjj\mathrm{-EW}} = 0.57 \; ^{+ 0.14} _{- 0.13} \,(\mathrm{stat.}) \; ^{+ 0.07} _{- 0.06} \,(\mathrm{syst.}) \; \mathrm{fb}$. Total and differential fiducial cross-sections of the sum of $W^\pm Z jj$ electroweak and strong productions for several kinematic observables are also measured.

0 data tables match query

Measurement of $W^{\pm}Z$ production cross sections and gauge boson polarisation in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 535, 2019.
Inspire Record 1720438 DOI 10.17182/hepdata.83701

This paper presents measurements of $W^{\pm}Z$ production cross sections in $pp$ collisions at a centre-of-mass energy of 13 TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1 fb$^{-1}$. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.7 \pm 1.0$ (stat.) $\pm 2.3$ (syst.) $\pm 1.4$ (lumi.) fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of $61.5^{+1.4}_{-1.3}$ fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of $W$ and $Z$ bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the $W$ and $Z$ bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.

0 data tables match query

Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 092012, 2018.
Inspire Record 1676551 DOI 10.17182/hepdata.83419

A search for electroweak production of supersymmetric particles is performed in two-lepton and three-lepton final states using recursive jigsaw reconstruction. The search uses data collected in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$ = 13 TeV proton--proton collisions at the CERN Large Hadron Collider corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Chargino-neutralino pair production, with decays via W/Z bosons, is studied in final states involving leptons and jets and missing transverse momentum for scenarios with large and intermediate mass-splittings between the parent particle and lightest supersymmetric particle, as well as for the scenario where this mass splitting is close to the mass of the Z boson. The latter case is challenging since the vector bosons are produced with kinematic properties that are similar to those in Standard Model processes. Results are found to be compatible with the Standard Model expectations in the signal regions targeting large and intermediate mass-splittings, and chargino-neutralino masses up to 600 GeV are excluded at 95% confidence level for a massless lightest supersymmetric particle. Excesses of data above the expected background are found in the signal regions targeting low mass-splittings, and the largest local excess amounts to 3.0 standard deviations.

0 data tables match query

Charged-particle distributions in $\sqrt{s}=13$ TeV $pp$ interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 758 (2016) 67-88, 2016.
Inspire Record 1419652 DOI 10.17182/hepdata.72491

Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

0 data tables match query

Measurement of the cross-section for electroweak production of dijets in association with a $Z$ boson in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 775 (2017) 206-228, 2017.
Inspire Record 1627873 DOI 10.17182/hepdata.77267

The cross-section for the production of two jets in association with a leptonically decaying Z boson ($Zjj$) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The electroweak $Zjj$ cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan $Zjj$ process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is $\sigma^{Zjj}_{EW}= 119\pm 16 (\mathrm{stat.}) \pm 20 (\mathrm{syst.})\pm 2 (\mathrm{lumi.})$ for dijet invariant mass greater than 250 GeV, and $34.2\pm 5.8 (\mathrm{stat.})\pm 5.5 (\mathrm{syst.})\pm 0.7 (\mathrm{lumi.})$ for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive $Zjj$ cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan $Zjj$ production.

0 data tables match query

Version 2
Measurements of the production cross section of a $Z$ boson in association with jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 361, 2017.
Inspire Record 1514251 DOI 10.17182/hepdata.76542

Measurements of the production cross section of a $Z$ boson in association with jets in proton-proton collisions at $\sqrt{s} = 13$ TeV are presented, using data corresponding to an integrated luminosity of 3.16 fb$^{-1}$ collected by the ATLAS experiment at the CERN Large Hadron Collider in 2015. Inclusive and differential cross sections are measured for events containing a $Z$ boson decaying to electrons or muons and produced in association with up to seven jets with $p_T > 30$ GeV and $|y| <2.5$. Predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements for up to two additional partons interfaced with parton shower and fixed-order predictions at next-to-leading order and next-to-next-to-leading order are compared with the measured cross sections. Good agreement within the uncertainties is observed for most of the modelled quantities, in particular with the generators which use next-to-leading-order matrix elements and the more recent next-to-next-to-leading-order fixed-order predictions.

0 data tables match query