A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 $\pm$ 0.12 GeV, and an upper limit on the width $\Gamma_\mathrm{H}$$\lt$ 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 $^{+2.0}_{-1.5}$ MeV, in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations.
Observed profile likelihood projection on mH, for different flavor categories combined, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.
Observed profile likelihood projection on mH, for the 4mu final state, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.
Observed profile likelihood projection on mH, for the 4e final state, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.
Measurements of the polarization and spin correlation in top quark pairs ($\mathrm{t\bar{t}}$) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the $\mathrm{t\bar{t}}$ system and the top quark scattering angle in the $\mathrm{t\bar{t}}$ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the $\mathrm{t\bar{t}}$ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for $\mathrm{t\bar{t}}$ states at the production threshold and at high masses of the $\mathrm{t\bar{t}}$ system. Entanglement is observed for the first time in events at high $\mathrm{t\bar{t}}$ mass, where a large fraction of the $\mathrm{t\bar{t}}$ decays are space-like separated, with an expected and observed significance of above 5 standard deviations.
Results for full matrix measurement inclusive from $m(t\bar{t})$
Covariance for full matrix measurement inclusive from $m(t\bar{t})$
Results for full matrix measurement all bins from $m(t\bar{t})$ fit
Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton-proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb$^{-1}$, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two $b$-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of $b$-jets and $c$-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ production are measured to be $1.28^{+0.27}_{-0.24}\;\text{pb}$ and $6.4^{+1.0}_{-0.9}\;\text{pb}$, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive $t\bar{t}$ and $t\bar{t}+b\bar{b}$ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various $t\bar{t}$ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the $t\bar{t}$ decay products and the jet multiplicity, the cross-section ratios of $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ to total $t\bar{t}+\text{jets}$ production are determined to be $(1.23 \pm 0.25) \%$ and $(8.8 \pm 1.3) \%$.
Measured cross-section values in the fiducial phase space and inclusive volume for the various $t\bar{t}+jets$ categories.
Post-fit agreement between data and MC prediction for $SR_{\mathrm{loose}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest c-tagged jets, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.
Post-fit agreement between data and MC prediction for the $SR_{\mathrm{tight}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest jets tagged with c@11%, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.
A search is presented for a heavy scalar ($H$) or pseudo-scalar ($A$) predicted by the two-Higgs-doublet models, where the $H/A$ is produced in association with a top-quark pair ($t\bar{t}H/A$), and with the $H/A$ decaying into a $t\bar{t}$ pair. Events are selected requiring exactly one or two opposite-charge electrons or muons. Data-driven corrections are applied to improve the modelling of the $t\bar{t}$+jets background in the regime with high jet and $b$-jet multiplicities. These include a novel multi-dimensional kinematic reweighting based on a neural network trained using data and simulations. An $H/A$-mass parameterised graph neural network is trained to optimise the signal-to-background discrimination. In combination with the previous search performed by the ATLAS Collaboration in the multilepton final state, the observed upper limits on the $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production cross-section at 95% confidence level range between 14 fb and 5.0 fb for an $H/A$ with mass between 400 GeV and 1000 GeV, respectively. Assuming that both the $H$ and $A$ contribute to the $t\bar{t}t\bar{t}$ cross-section, $\tan\beta$ values below 1.7 or 0.7 are excluded for a mass of 400 GeV or 1000 GeV, respectively. The results are also used to constrain a model predicting the pair production of a colour-octet scalar, with the scalar decaying into a $t\bar{t}$ pair.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 1L region with $\geq 10$ jets and four $b$-tagged jets. The fit is performed under the background-only hypothesis.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 2LOS region with $\geq8$ jets and $\geq 4$ $𝑏$-tagged jets. The fit is performed under the background-only hypothesis.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the validation region in the 1L region with $\geq 10$ jets. These regions do not enter the fit. The post-fit background prediction is obtained using the post-fit nuisance parameters from the background-only fit in the control and signal regions.
A combination of searches for the single production of vector-like top quarks ($T$) is presented. These analyses are based on proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded in 2015$-$2018 with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The $T$-quark decay modes considered in this combination are into a top quark and either a Standard Model Higgs boson or a $Z$ boson ($T \to Ht$ and $T \to Zt$). The individual searches used in the combination are differentiated by the number of leptons ($e$, $\mu$) in the final state. The observed data are found to be in good agreement with the Standard Model background prediction. Interpretations are provided for a range of masses and couplings of the vector-like top quark for benchmark models and generalized representations in terms of 95% confidence level limits. For a benchmark signal prediction of a vector-like top quark SU2 singlet with electroweak coupling, $\kappa$, of 0.5, masses below 2.1 TeV are excluded, resulting in the most restrictive limits to date.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.5. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) doublet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
The forward-backward asymmetry in Drell-Yan production and the effective leptonic electroweak mixing angle are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. The measurement uses both dimuon and dielectron events, and is performed as a function of the dilepton mass and rapidity. The unfolded angular coefficient $A_4$ is also extracted, as a function of the dilepton mass and rapidity. Using the CT18Z set of parton distribution functions, we obtain $\sin\theta^\ell_\text{eff}$ = 0.23152 $\pm$ 0.00031, where the uncertainty includes the experimental and theoretical contributions. The measured value agrees with the standard model fit result to global experimental data. This is the most precise $\sin\theta^\ell_\text{eff}$ measurement at a hadron collider, with a precision comparable to the results obtained at LEP and SLD.
Measured $A_4(|Y|,M))$ distribution for the combined Run 2 data.
Correlation coefficients for the $A_4(|Y|,M)$ values among different $|Y|-M$ bins. The $A_4(|Y|,M)$ values and total uncertainties are shown in Figure 8 in the paper.
A search for heavy right-handed Majorana neutrinos is performed with the ATLAS detector at the CERN Large Hadron Collider, using the 140 $\mathrm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected during Run 2. This search targets $t\bar{t}$ production, in which both top quarks decay into a bottom quark and a $W$ boson, where one of the $W$ bosons decays hadronically and the other decays into an electron or muon and a heavy neutral lepton. The heavy neutral lepton is identified through a decay into an electron or muon and another $W$ boson, resulting in a pair of same-charge same-flavor leptons in the final state. This paper presents the first search for heavy neutral leptons in the mass range of 15-75 GeV using $t\bar{t}$ events. No significant excess is observed over the background expectation, and upper limits are placed on the signal cross-sections. Assuming a benchmark scenario of the phenomenological type-I seesaw model, these cross-section limits are then translated into upper limits on the mixing parameters of the heavy Majorana neutrino with Standard Model neutrinos.
Definitions of different signal and control regions. The control regions are enriched in events from the following processes. ttW, heavy-flavor (HF) fake, photon-conversion (PC), and charge-flip (CF). The 'Z veto' is defined as $m_{ee}$ not in [$m_Z$ - 10 GeV, $m_Z$ + 10 GeV].
Post-fit event yields for the different background processes in the signal regions, as obtained from the background-only fit in the high-mass region.
Expected and observed upper limits on the signal cross-sections at 95% CL.
Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($\ell$ = e or $\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X) $\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X) $\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for mu final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 13TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
This Letter presents the first search for bottom quark associated production of the standard model Higgs boson, in final states with leptons. Higgs boson decays to pairs of tau leptons and pairs of leptonically decaying W bosons are considered. The search is performed using data collected from 2016 to 2018 by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at the 95% confidence level are placed on the signal strength for Higgs boson production in association with bottom quarks; the observed (expected) upper limit is 3.7 (6.1) times the standard model prediction.
Inclusive signal strength modifiers $\mu$.
Cross section limits assuming a SM cross-section of 1.489 pb $\sigma_i$.
Signal strength modifier calculated for the bbH(yb2) process $\mu_i$.
A measurement of the ratio of branching fractions $R$(J/$\psi$) = $\mathcal{B}$(B$^+_\text{c}$$\to$ J/$\psi$$\tau^+\nu_\tau$) / $\mathcal{B}$(B$^+_\text{c}$$\to$ J/$\psi$$\mu^+\nu_\mu$) in the J/$\psi$$\to$$\mu^+\mu^-$, $\tau^+$$\to$$\mu^+\mu_\tau\overline{\nu}_\tau$ decay channel is presented. This measurement uses a sample of proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment in 2018, corresponding to an integrated luminosity of 59.7 fb$^{-1}$. The measured ratio, $R$(J/$\psi$) = 0.17 $^{+ 0.18}_{- 0.17}$ (stat) $^{+ 0.21}_{- 0.22}$ (syst) $^{+ 0.19}_{- 0.18}$ (theo) = 0.17 $\pm$ 0.33, agrees with the value of 0.2582 $\pm$ 0.0038 predicted by the standard model, which assumes lepton flavor universality. By testing lepton flavor universality, this measurement is a probe of new physics using B$^+_\text{c}$ mesons, which are currently only produced at the LHC.
Measured R(J/psi) ratio