We present a measurement of the fraction of inclusive $W$+jets events produced with net charm quantum number $\pm1$, denoted $W$+$c$-jet, in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using approximately 1~fb$^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron Collider. We identify the $W$+jets events via the leptonic $W$ boson decays. Candidate $W$+$c$-jet events are selected by requiring a jet containing a muon in association with a reconstructed $W$ boson and exploiting the charge correlation between this muon and $W$ boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of $W$+$c$-jet events in the inclusive $W$+jets sample for jet $p_{T}>20$ GeV and pseudorapidity $|\eta|<2.5$ to be 0.074$\pm0.019$(stat.)$\pm^{0.012}_{0.014}$(syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of $W$+$c$-jet events is estimated to be $2.5\times 10^{-4}$, which corresponds to a 3.5 $\sigma$ statistical significance.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (E NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (MU NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (LEPTON NU) channel for various jet PT ranges.
We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.
We present a measurement of the shape of the Z/gamma* boson transverse momentum (qT) distribution in ppbar -> Z/gamma* -> ee+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low qT, but above the perturbative QCD calculation in the region of qT>30 GeV/c. Using events with qT<30 GeV/c, we extract the value of g2, one of the non-perturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events.
Correlation matrix for all rapidity Z bosons for the 12 bins used for PT < 30.
Normalized differential transverse momentum spectrum for Z0/GAMMA* events for the absolute rapidity region > 2 and PT < 30 GeV.
We present the first model-independent measurement of the helicity of $W$ bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle $\theta^*$ between the momenta of the down-type fermion and the top quark in the $W$ boson rest frame for each top quark decay. A fit of the resulting \costheta distribution finds that the fraction of longitudinal $W$ bosons $f_0 = 0.425 \pm 0.166 \hbox{(stat.)} \pm 0.102 \hbox{(syst.)}$ and the fraction of right-handed $W$ bosons $f_+ = 0.119 \pm 0.090 \hbox{(stat.)} \pm 0.053 \hbox{(syst.)}$, which is consistent at the 30% C.L. with the standard model.
COS(THETA*) distribution for leptonic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for hadronic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for W decay in dilepton events.. Data are read from plots and errors are statistcial (sqrt(N)).
We present measurements of the process $p\bar{p} \to WZ+X \to \ell^{\prime} \nu_{\ell^{\prime}} \ell \bar{\ell}$ at $\sqrt{s}=1.96$ TeV, where $\ell$ and $\ell^{\prime}$ are electrons or muons. Using 1 fb$^{-1}$ of data from the D0 experiment, we observe 13 candidates with an expected background of $4.5\pm0.6$ events and measure a cross section $\sigma(WZ)=2.7^{+1.7}_{-1.3}$ pb. From the number of observed events and the $Z$ boson transverse momentum distribution, we limit the trilinear $WWZ$ gauge couplings to $-0.17 \le \lambda_Z \le 0.21$ $(\Delta \kappa_Z = 0)$ at the 95% C.L. for a form factor scale $\Lambda=2$ TeV. Further, assuming that $\Delta g^Z_1 = \Delta\kappa_Z$, we find $-0.12 \le \Delta\kappa_Z \le 0.29$ $(\lambda_Z=0)$ at the 95% C.L. These are the most restrictive limits on the $WWZ$ couplings available to date.
Measured WZ cross section.
We present a measurement of the ttbar pair production cross section in ppbar collisions at sqrt(s) = 1.96 TeV utilizing approximately 425 pb-1 of data collected with the D0 detector. We consider decay channels containing two high pT charged leptons (either e or \mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e\mu, ee, or \mu\mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/-1.4(stat} +/- 1.0(syst) pb.
TOP TOPBAR production cross section for top quark mass 175 GeV.
TOP TOPBAR production cross section for the current Tevatron average top quark mass 170.9 GeV.. Error contains both statistics and systematics.
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV utilizing 425 pb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair containing one high-pT electron or muon and at least four jets. We exploit specific kinematic features of ttbar events to extract the cross section. For a top quark mass of 175 GeV, we measure sigma_ttbar = 6.4 +1.3-1.2(stat} +/- 0.7(syst)+/- 0.4(lum) pb in good agreement with the standard model prediction.
TOP TOPBAR production cross section.
We present a study of eegamma and mumugamma events using over 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider at sqrt(s) = 1.96 TeV. Having observed 453 (515) candidates in the eegamma (mumugamma) final state, we measure the Zgamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta R(lgamma} > 0.7, and invariant mass of the di-lepton pair M(ll) > 30 GeV, to be 4.96 +/- 0.30(stat. + syst.) +/- 0.30(lumi.) pb, in agreement with the standard model prediction of 4.74 +/- 0.22 pb. This is the most precise Zgamma cross section measurement at a hadron collider. We set limits on anomalous trilinear Zgammagamma and ZZgamma gauge boson couplings of -0.085 < h(30)^(gamma) < 0.084, -0.0053 < h(40)^(gamma) < 0.0054 and -0.083 < h(30)^(Z) < 0.082, -0.0053 < h(40)^(Z) < 0.0054 at the 95% C.L. for the form-factor scale Lambda = 1.2 TeV.
Measured cross section for Z0 GAMMA production. Error contains both statistics and systematics (excluding luminosity uncertainty).
We present a measurement of the shape of the boson rapidity distribution for $p\bar{p}\to Z / \gamma^* \to e^+e^- + X$ events at a center-of-mass energy of 1.96 TeV. The measurement is made for events with electron-positron mass 71 < M_ee < 111 GeV and uses 0.4 $fb^{-1}$ of data collected at the Fermilab Tevatron collider with the D0 detector. This measurement significantly reduces the uncertainties on the rapidity distribution in the forward region compared with previous measurements. Predictions of NNLO QCD are found to agree well with the data over the full rapidity range.
Normalized rapidity distribution.
Details of systematic errors.
We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.
Ratio of the cross sections.
Number of observed events per 5 GeV bin for the >=`1Jet sample. Data read from plots.
Number of observed events per 5 GeV bin for the >=2Jet sample. Data read from plots.