Date

Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of $Z$ bosons in association with a high-energy photon ($Z\gamma$ production) is studied in the neutrino decay channel of the $Z$ boson using $pp$ collisions at $\sqrt{s}$ = 13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate $Z\gamma$ events with invisible decays of the $Z$ boson are selected by requiring significant transverse momentum ($p_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy ($E_{T}$). The rate of $Z\gamma$ production is measured as a function of photon $E_{T}$, dineutrino system $p_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in $Z\gamma$ production with photon $E_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

0 data tables match query

Measurement of transverse energy-energy correlations in multi-jet events in $pp$ collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector and determination of the strong coupling constant $\alpha_{\mathrm{s}}(m_Z)$

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 750 (2015) 427-447, 2015.
Inspire Record 1387176 DOI 10.17182/hepdata.69306

High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy-energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 $\mathrm{pb}^{-1}$. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the $Z$ boson mass is determined to be $\alpha_{\mathrm{s}}(m_Z) = 0.1173 \pm 0.0010 \mbox{ (exp.) }^{+0.0065}_{-0.0026} \mbox{ (theo.)}$.

0 data tables match query

Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 625, 2018.
Inspire Record 1675352 DOI 10.17182/hepdata.81726

A search for new phenomena in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton--proton collision data with an integrated luminosity of $36.1 \; \mathrm{fb}^{-1}$, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair and the lightest neutralino ($\tilde{\chi}_1^0$) via one of two next-to-lightest neutralino ($\tilde{\chi}_2^0$) decay mechanisms: $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$, where the $Z$ boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the $Z$ boson mass; and $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$ with no intermediate $\ell^+\ell^-$ resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 TeV and 1.3 TeV at 95% confidence level, respectively.

0 data tables match query

Search for direct top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in sqrt(s) = 7 TeV pp collisions using 4.7 fb-1 of ATLAS data

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.Lett. 109 (2012) 211803, 2012.
Inspire Record 1127331 DOI 10.17182/hepdata.59857

A search is presented for direct top squark pair production in final states with one isolated electron or muon, jets, and missing transverse momentum in proton-proton collisions at sqrt(s) = 7 TeV. The measurement is based on 4.7 fb-1 of data collected with the ATLAS detector at the LHC. Each top squark is assumed to decay to a top quark and the lightest supersymmetric particle (LSP). The data are found to be consistent with Standard Model expectations. Top squark masses between 230 GeV and 440 GeV are excluded with 95% confidence for massless LSPs, and top squark masses around 400 GeV are excluded for LSP masses up to 125 GeV.

0 data tables match query

Search for pair production of gluinos decaying via stop and sbottom in events with $b$-jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 94 (2016) 032003, 2016.
Inspire Record 1466302 DOI 10.17182/hepdata.61814

A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.

0 data tables match query

Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at sqrt(s) = 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 04 (2014) 031, 2014.
Inspire Record 1279489 DOI 10.17182/hepdata.62729

Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 inverse femtobarns of proton-proton collision data collected at a centre-of-mass energy of sqrt(s)=8 TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5 sigma level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the SHERPA and POWHEG event generators.

0 data tables match query

Version 2
A measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

0 data tables match query

Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 222002, 2020.
Inspire Record 1790256 DOI 10.17182/hepdata.93183

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

0 data tables match query

Combination of searches for Higgs boson pairs in $pp$ collisions at $\sqrt{s} = $13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135103, 2020.
Inspire Record 1738524 DOI 10.17182/hepdata.90521

This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bbbb, bbWW, bb$\tau\tau$, WWWW, bb$\gamma \gamma$ and WW$\gamma\gamma$ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio ($ \kappa_{\lambda} $) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to $ -5.0 < \kappa_{\lambda} <12.0 $ ($ -5.8 < \kappa_{\lambda} <12.0 $). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model.

0 data tables match query

Measurement of the differential cross-sections of prompt and non-prompt production of $J/\psi$ and $\psi(2\mathrm{S})$ in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 283, 2016.
Inspire Record 1409298 DOI 10.17182/hepdata.72721

The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.

0 data tables match query