Showing 10 of 937 results
Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb-1 of proton-proton collision data at sqrt(s) = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model.
MT2 in WW CR for SR-WWa.
ET(miss,rel) in Top CR for SR-MT2 and SR-WWb/c.
ET(miss,rel) in ZV CR for SR-MT2 and SR-WWb/c.
M(jj) in Top CR for SR-Zjets.
SF - M(ll) in SR-WWa w/o M(ll) and ET(miss,rel).
DF - M(ll) in SR-WWa w/o M(ll) and ET(miss,rel).
SF - ET(miss,rel) in SR-WWa w/o M(ll) and ET(miss,rel).
DF - ET(miss,rel) in SR-WWa w/o M(ll) and ET(miss,rel).
SF - MT2 in SR-MT2 w/o MT2.
DF - MT2 in SR-MT2 w/o MT2.
SF - ET(miss,rel) in SR-Zjets w/o ET(miss,rel).
Observed 95% CL exclusion contour for chargino pair production via sleptons.
Expected 95% CL exclusion contour for chargino pair production via sleptons.
Observed 95% CL exclusion contour for chargino pair production via WW.
Observed 95% CL limit on signal strength for chargino pair production via WW for mN1 = 0 GeV.
Expected 95% CL limit on signal strength for chargino pair production via WW for mN1 = 0 GeV.
Observed 95% CL exclusion contour for chargino neutralino production via WZ.
Expected 95% CL exclusion contour for chargino neutralino production via WZ.
Observed 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
Expected 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
Observed 95% CL exclusion contour for slepton pair production (right-handed).
Expected 95% CL exclusion contour for slepton pair production (right-handed).
Observed 95% CL exclusion contour for slepton pair production (left-handed).
Expected 95% CL exclusion contour for slepton pair production (left-handed).
Observed 95% CL exclusion contour for slepton pair production (right- plus left-handed).
Expected 95% CL exclusion contour for slepton pair production (right- plus left-handed).
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=100 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=100 GeV.
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=140 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=140 GeV.
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV (2+3L combination).
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV (2+3L combination).
Expected 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV.
Observed 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV.
Expected 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV (2+3L combination).
Observed 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV (2+3L combination).
Observed 95% CL exclusion contour for selectron pair production (right-handed).
Expected 95% CL exclusion contour for selectron pair production (right-handed).
Observed 95% CL exclusion contour for selectron pair production (left-handed).
Expected 95% CL exclusion contour for selectron pair production (left-handed).
Observed 95% CL exclusion contour for selectron pair production (right- plus left-handed).
Expected 95% CL exclusion contour for selectron pair production (right- plus left-handed).
Observed 95% CL exclusion contour for smuon pair production (right-handed).
Expected 95% CL exclusion contour for smuon pair production (right-handed).
Observed 95% CL exclusion contour for smuon pair production (left-handed).
Expected 95% CL exclusion contour for smuon pair production (left-handed).
Observed 95% CL exclusion contour for smuon pair production (right- plus left-handed).
Expected 95% CL exclusion contour for smuon pair production (right- plus left-handed).
Observed 95% CL exclusion contour for chargino pair production via sleptons.
Expected 95% CL exclusion contour for chargino pair production via sleptons.
Signal regions contributing to Fig. 06a.
Signal regions contributing to Fig. 05.
Signal regions contributing to Fig. 08a.
Signal regions contributing to Fig. 08b.
Signal regions contributing to Fig. 08c.
Signal regions contributing to Fig. 09a.
Signal regions contributing to Fig. 09b.
Signal regions contributing to Fig. 09c.
Signal regions contributing to Fig. 10a.
Observed cross-section limits for Fig. 06a.
Observed cross-section limits for Fig. 05.
Observed cross-section limits for Fig. 07a.
Observed cross-section limits for Fig. 08a.
Observed cross-section limits for Fig. 08b.
Observed cross-section limits for Fig. 08c.
Observed CLs values for Fig. 06a.
Observed CLs values for Fig. 05.
Observed CLs values for Fig. 07a.
Observed CLs values for Fig. 08a.
Observed CLs values for Fig. 08b.
Observed CLs values for Fig. 08c.
Observed CLs values for Fig. 09a.
Observed CLs values for Fig. 09b.
Observed CLs values for Fig. 09c.
Observed CLs values for Fig. 10a.
ET(miss,rel) in WW CR for SR-MT2 and SR-WWb/c.
ET(miss,rel) in Top CR for SR-WWa.
Central light jets multiplicity in Top CR for SR-Zjets.
ET(miss,rel) in ZV CR for SR-WWa.
SF - ET(miss,rel) in SR-MT2 w/o MT2.
DF - ET(miss,rel) in SR-MT2 w/o MT2.
Number of generated events for Fig. 06a.
Number of generated events for Fig. 05.
Number of generated events for Fig. 07a.
Number of generated events for Fig. 08a.
Number of events generated for Fig. 08b.
Number of events generated for Fig. 08c.
Production cross-sections in Fig. 06a.
Production cross-sections in Fig. 05.
Production cross-sections in Fig. 07a.
Production cross-sections in Fig. 08a.
Production cross-sections in Fig. 08b.
Production cross-sections in Fig. 08c.
Acceptance IN PCT in Fig. 06a.
Acceptance IN PCT in Fig. 05.
Acceptance IN PCT in Fig. 07a.
Acceptance IN PCT in Fig. 08a.
Acceptance IN PCT in Fig. 08b.
Acceptance IN PCT in Fig. 08c.
Efficiency IN PCT in Fig. 06a.
Efficiency IN PCT in Fig. 05.
Efficiency IN PCT in Fig. 07a.
Efficiency IN PCT in Fig. 08a.
Efficiency IN PCT in Fig. 08b.
Efficiency IN PCT in Fig. 08c.
Total systematic uncertainty IN PCT on signal yields in Fig. 06a.
Total systematic uncertainty IN PCT on signal yields in Fig. 05.
Total systematic uncertainty IN PCT on signal yields in Fig. 07a.
Total systematic uncertainty IN PCT on signal yields in Fig. 08a.
Total systematic uncertainty IN PCT on signal yields in Fig. 08b.
Total systematic uncertainty IN PCT on signal yields in Fig. 08c.
Observed 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
Expected 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
A search is presented for the pair production of light scalar top quarks in sqrt(s) = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. This analysis uses the full data sample collected during 2011 that corresponds to a total integrated luminosity of 4.7 fb-1. Light scalar top quarks are searched for in events with two opposite-sign leptons (e, mu), large missing transverse momentum and at least one jet in the final state. No excess over Standard Model expectations is found, and the results are interpreted under the assumption that the light scalar top decays to a b-quark in addition to an on-shell chargino whose decay occurs through a virtual W boson. If the chargino mass is 106 GeV, light scalar top quark masses up to 130 GeV are excluded for neutralino masses below 70 GeV.
Distribution of the PT of the leading electron for E-E events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the PT of the leading muon for MU-MU events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the PT of the leading electron for E-MU events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the PT of the leading muon for E-MU events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the missing ET for all events in the Signal Region.
Distribution of MET-significnce, ie the missing ET/sqrt(scalar sum of PT of all leptons and jets), for all events in the Signal Region.
Distribution of the missing ET for E-E events in the Z Control Region.
Distribution of the missing ET for MU-MU events in the Z Control Region.
Distribution of the missing ET for E-E events in the Top Control Region.
Distribution of the missing ET for E-MU events in the Top Control Region.
Distribution of the missing ET for MU-MU events in the Top Control Region.
Distribution of the Jet Multiplicity for all events in the Top Control Region.
Distribution of the B-Jet Multiplicity for all events in the Top Control Region.
Distribution of the PT of the leading Jet for all events in the Top Control Region.
Distribution of the PT of the leading B-Jet for all events in the Top Control Region.
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1<eta<4.9 in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb+Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of p+Pb collisions. Despite the small transverse spatial extent of the p+Pb collision system, the large magnitude of v_2 and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in p+Pb reactions.
A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.
Distribution of the total visible transverse energy $H_{\mathrm{T}}$ for selected diphoton events, after requiring $\Delta\phi_{\mathrm{min}} (\mathrm{jet}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$ but before application of a requirement on $E_{\mathrm{T}}^{\mathrm{miss}}$ and $\Delta\phi_{\mathrm{min}} (\gamma, E_{\mathrm{T}}^{\mathrm{miss}})$ ($\gamma\gamma$ pre-selection). Also shown are the expected $H_{\mathrm{T}}$ distributions of contributing SM processes as well as those for two points each in the parameter spaces of the gluino-bino and wino-bino GGM models (mass values in GeV). Events outside the range of the displayed region are included in the highest-value bin.
Distribution of $R_{\mathrm{T}}^{4}$ for the sample satisfying all $\mathrm{SR}^{\gamma j}_{L}$ selection criteria except the $R_{\mathrm{T}}^{4}$ requirement itself, but with a relaxed requirement of $E_{\mathrm{T}}^{\mathrm{miss}} > 100$ GeV. Also shown are the expected $R_{\mathrm{T}}^{4}$ distributions of contributing SM processes as well as those for two points in the $m_{\tilde{g}}$-$m_{\tilde{\chi}^{0}_{1}}$ parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value of the gluino mass arises from the choice $M_3 = 1900$ GeV, while the values of the $\tilde{\chi}^{0}_{1}$ mass arise from the choices $\mu = 400$ and $\mu = 600$ GeV, combined with the constraint that the branching fraction of $\tilde{\chi}^{0}_{1} \to \gamma\tilde{G}$ be 50%. The vertical dashed line and left-pointing arrow shows the region of the $R_{\mathrm{T}}^{4}$ observable selected for inclusion in $\mathrm{SR}^{\gamma j}_{L}$. Uncertainties are shown as hatched bands for the various expected sources of SM background (statistical only) and as error bars for data. The lower panels show the ratio of the data to the SM prediction.
Comparisons between expected and observed content of the validation and signal regions for the diphoton analysis. The uncertainties in the numbers of expected events are the combined statistical and systematic uncertainties. The lower panel shows the pull (difference between observed and expected event counts normalized by the uncertainty) for each region.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for the ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,100) GeV and ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,800) GeV models. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma\gamma}_{W-L}$ and $\mathrm{SR}^{\gamma\gamma}_{W-H}$. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of combined statistical and systematic uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for the ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,100) GeV and ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,800) GeV models. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma\gamma}_{W-L}$ and $\mathrm{SR}^{\gamma\gamma}_{W-H}$. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of combined statistical and systematic uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Comparisons between expected and observed content of the validation and signal regions for the photon+jets analysis. The uncertainties in the expected numbers of events are the combined statistical and systematic uncertainties. The lower panel shows the pull (difference between observed and expected event counts normalized by the uncertainty) for each region.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma j}_{H}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for points in the $m_{\tilde{g}}-m_{\tilde{\chi}^{0}_{1}}$ parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value of the gluino mass arises from the choice $M_{3}$ = 1900 GeV. The $\tilde{\chi}^{0}_{1}$ mass values of 1868, 1920, 442 and 652 GeV arise from the choices $\mu$ = 1810, 1868, 400 and 600 GeV, respectively, combined with the constraint that the branching fraction of $\tilde{\chi}^{0}_{1}$ $\to \gamma \tilde{G}$ be 50%. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma j}_{H}$ and $\mathrm{SR}^{\gamma j}_{L}$ for $\mathrm{SR}^{\gamma j}_{L200}$, the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement is 200 GeV rather than 300 GeV. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of statistical uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma j}_{L}$ or $\mathrm{SR}^{\gamma j}_{L200}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for points in the $m_{\tilde{g}}-m_{\tilde{\chi}^{0}_{1}}$ parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value of the gluino mass arises from the choice $M_{3}$ = 1900 GeV. The $\tilde{\chi}^{0}_{1}$ mass values of 1868, 1920, 442 and 652 GeV arise from the choices $\mu$ = 1810, 1868, 400 and 600 GeV, respectively, combined with the constraint that the branching fraction of $\tilde{\chi}^{0}_{1} \to \gamma \tilde{G}$ be 50%. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma j}_{H}$ and $\mathrm{SR}^{\gamma j}_{L}$ for $\mathrm{SR}^{\gamma j}_{L200}$, the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement is 200 GeV rather than 300 GeV. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of statistical uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Expected exclusion limits in the gluino-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 1600$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 1600$ GeV.
Observed exclusion limits in the gluino--bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 1600$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 1600$ GeV.
Expected exclusion limit in the squark-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 900$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 900$ GeV.
Observed exclusion limit in the squark--bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 900$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 900$ GeV.
Expected exclusion limit in the wino-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 400$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}}$ < 400$ GeV.
Observed exclusion limit in the wino-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 400$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}}$ < 400$ GeV.
Expected exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis.
Observed exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis.
Distribution of the transverse momentum $p_{\mathrm{T}} (\ell\gamma\gamma)$ of events in the $\ell\gamma\gamma$ control region (except without a cut on $p_{\mathrm{T}} (\ell\gamma\gamma)$). Also shown is the expected contribution from various SM sources, including $W(\to\ell\nu) + \gamma\gamma$ production itself. The displayed uncertainties are a combination of those from all SM sources except $W(\to\ell\nu) + \gamma\gamma$ production, and include statistical and systematic uncertainties.
Distribution of $E_{\mathrm{T}}^{\mathrm{miss}}$ for diphoton events in a validation region defined by a requirement of $H_{\mathrm{T}} > 1750$ GeV. Also shown is the expected contribution from various SM sources, as well as their combined statistical and systematic uncertainties.
Distribution of $H_{\mathrm{T}}$ for diphoton events in a validation region defined by requirement of $E_{\mathrm{T}}^{\mathrm{miss}} > 100$ GeV. Also shown is the expected contribution from various SM sources, as well as their combined statistical and systematic uncertainties.
Distribution of $m_{\mathrm{eff}}$ for events satisfying all requirements $\mathrm{SR}^{\gamma j}_{H}$ save the $m_{\mathrm{eff}}$ requirement itself. Also shown is the expected contribution from various SM sources, and their combined statistical uncertainties.
Distribution of $m_{\mathrm{eff}}$ for events satisfying all requirements $\mathrm{SR}^{\gamma j}_{L}$ save the $m_{\mathrm{eff}}$ requirement itself. Also shown is the expected contribution from various SM sources, and their combined statistical uncertainties.
Derived exclusion limits for the gluino-bino GGM model explored by the diphoton analysis. For each point in the gluino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the squark-bino GGM model explored by the diphoton analysis. For each point in the squark-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the wino-bino GGM model explored by the diphoton analysis. For each point in the wino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{W-L}$ or $\mathrm{SR}^{\gamma\gamma}_{W-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis. For each point in the higgsino-bino parameter space, the SR ($\mathrm{SR}^{\gamma j}_{L}$ or $\mathrm{SR}^{\gamma j}_{H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the gluino-bino GGM model explored by the diphoton analysis. For each point in the gluino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where SL and SH mean $\mathrm{SR}^{\gamma\gamma}_{S-L}$ and $\mathrm{SR}^{\gamma\gamma}_{S-H}$, respectively.
Derived exclusion limits for the squark-bino GGM model explored by the diphoton analysis. For each point in the squark-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where SL and SH mean $\mathrm{SR}^{\gamma\gamma}_{S-L}$ and $\mathrm{SR}^{\gamma\gamma}_{S-H}$, respectively.
Derived exclusion limits for the wino--bino GGM model explored by the diphoton analysis. For each point in the wino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{W-L}$ or $\mathrm{SR}^{\gamma\gamma}_{W-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where WL and WH mean $\mathrm{SR}^{\gamma\gamma}_{W-L}$ and $\mathrm{SR}^{\gamma\gamma}_{W-H}$, respectively.
Derived exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis. For each point in the higgsino-bino parameter space, the SR ($\mathrm{SR}^{\gamma j}_{L}$ or $\mathrm{SR}^{\gamma j}_{H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where L and H mean $\mathrm{SR}^{\gamma j}_{L}$ and $\mathrm{SR}^{\gamma j}_{H}$, respectively.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-L}$ for the signal models of the gluino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-H}$ for the signal models of the gluino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-L}$ for the signal models of the squark-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-H}$ for the signal models of the squark-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{W-L}$ for the signal models of the wino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{W-H}$ for the signal models of the wino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma j}_{L}$ for the signal models of the photon+jets GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma j}_{H}$ for the signal models of the photon+jets GGM grid.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ selection for one relevant signal point in the gluino-bino model, where the gluinos have mass of 1900 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 300 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ selection for one relevant signal point in the gluino-bino model, where the gluinos have mass of 1900 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 1700 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ selection for one relevant signal point in the squark-bino model, where the squarks have mass of 1700 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 200 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ selection for one relevant signal point in the squark-bino model, where the squarks have mass of 1700 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 1600 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ selection for one relevant signal point in the wino-bino model, where the winos have mass of 1000 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 200 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ selection for one relevant signal point in the wino-bino model, where the winos have mass of 1000 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 800 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma j}_{L}$ selection, for two relevant signal points in the higgsino-bino model, where the gluinos have mass of 1974 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 442 GeV (10000 generated events), and 652 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma j}_{H}$ selection, for two relevant signal points in the higgsino-bino model, where the gluinos have mass of 1974 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 1868 GeV (10000 generated events), and 1920 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
This paper presents a measurement of jet fragmentation functions in 0.49 nb$^{-1}$ of Pb+Pb collisions and 25 pb$^{-1}$ of $pp$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in $pp$ collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed.
The ATLAS Collaboration has measured the inclusive production of $Z$ bosons via their decays into electron and muon pairs in $p+$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV at the Large Hadron Collider. The measurements are made using data corresponding to integrated luminosities of 29.4 nb$^{-1}$ and 28.1 nb$^{-1}$ for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$, respectively. The results from the two channels are consistent and combined to obtain a cross section times the $Z \rightarrow \ell\ell$ branching ratio, integrated over the rapidity region $|y^{*}_{Z}|<3.5$, of 139.8 $\pm$ 4.8 (stat.) $\pm$ 6.2 (syst.) $\pm$ 3.8 (lumi.) nb. Differential cross sections are presented as functions of the $Z$ boson rapidity and transverse momentum, and compared with models based on parton distributions both with and without nuclear corrections. The centrality dependence of $Z$ boson production in $p+$Pb collisions is measured and analyzed within the framework of a standard Glauber model and the model's extension for fluctuations of the underlying nucleon-nucleon scattering cross section.
Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb$^{-1}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a $Z$ boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of General Gauge Mediated supersymmetry, where higgsino masses are excluded up to 295 GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46 TeV, 1.06 TeV, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively.
The $m_{\mathrm{eff}}$ distribution for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement in SR0A and SR0B. Distributions for data, the estimated SM backgrounds, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement in SR0C and SR0D. Distributions for data, the estimated SM backgrounds, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement in SR1. Distributions for data, the estimated SM backgrounds, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal region.
The $m_{\mathrm{eff}}$ distribution for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement in SR2. Distributions for data, the estimated SM backgrounds, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal region.
Expected 95% CL exclusion limits on wino $W/Z$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on wino $W/Z$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on wino $W/Z$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on wino $W/Z$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on wino $W/h$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on wino $W/h$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on wino $W/h$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on wino $W/h$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on $\tilde{\ell}/\tilde{\nu}$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on $\tilde{\ell}/\tilde{\nu}$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on $\tilde{\ell}/\tilde{\nu}$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on $\tilde{\ell}/\tilde{\nu}$ NLSP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on gluino NSLP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on gluino NSLP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{12k} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on gluino NSLP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on gluino NSLP pair production with RPV $\tilde{\chi}_1^0$ decays via $\lambda_{i33} \neq 0$ where $i,k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where the signal regions are not mutually exclusive, the observed $\mathrm{CL}_s$ value is taken from the signal region with the better expected $\mathrm{CL}_s$ value.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/Z$ RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0A. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/Z$ RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0A, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/Z$ RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0B. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/Z$ RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0B, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/h$ RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0A. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/h$ RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0A, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/h$ RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0B. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses in the context of the wino $W/h$ RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0B, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the slepton/sneutrino masses in the context of the slepton/sneutrino RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0A. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the slepton/sneutrino masses in the context of the slepton/sneutrino RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0A, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the slepton/sneutrino masses in the context of the slepton/sneutrino RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0B. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the slepton/sneutrino masses in the context of the slepton/sneutrino RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0B, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the gluino masses in the context of the gluino RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0A. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the gluino masses in the context of the gluino RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0A, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the gluino masses in the context of the gluino RPV scenario with $\lambda_{12k} \neq 0$ couplings. The signal region used to obtain the limits is SR0B. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the gluino masses in the context of the gluino RPV scenario with $\lambda_{i33} \neq 0$ couplings. The signal region used to obtain the limits is the combination of SR0B, SR1 and SR2. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}\tilde{\chi}_1^{0}$ masses in the context of the higgsino GGM scenario in SR0C. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
Observed exclusion limits on the $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}\tilde{\chi}_1^{0}$ masses in the context of the higgsino GGM scenario in SR0D. All limits are computed at 95% CL. The grey numbers represent the 95% CL upper limits on the production cross-section (in fb) obtained using the signal efficiency and acceptance specific to this model.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the wino $W/Z$ model for $\lambda_{12k} \neq 0$ RPV couplings. For the $\lambda_{12k} \neq 0$ case, the results from SR0B are adopted everywhere in the final exclusion limit contours, as is found to be the most powerful signal region among SR0A and SR0B in the majority of the signal grid points of this model.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the wino $W/Z$ model for $\lambda_{i33} \neq 0$ RPV couplings. A combination of SR0A + SR1 + SR2 or SR0B + SR1 + SR2 is tested to detect the best expected limit; shown on the plot is the region (SR0A or SR0B) which is chosen to provide the best expected limit in combination with SR1 and SR2. The results from the combination SR0B + SR1 + SR2 are finally adopted everywhere in the final exclusion limit contour since they provide the best expected limit.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the wino $W/h$ model for $\lambda_{12k} \neq 0$ RPV couplings. For the $\lambda_{12k} \neq 0$ case, the results from SR0B are adopted everywhere in the final exclusion limit contours, as is found to be the most powerful signal region among SR0A and SR0B in the majority of the signal grid points of this model.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the wino $W/h$ model for $\lambda_{i33} \neq 0$ RPV couplings. A combination of SR0A + SR1 + SR2 or SR0B + SR1 + SR2 is tested to detect the best expected limit; shown on the plot is the region (SR0A or SR0B) which is chosen to provide the best expected limit in combination with SR1 and SR2. The results from the combination SR0B + SR1 + SR2 are finally adopted everywhere in the final exclusion limit contour since they provide the best expected limit.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the slepton/sneutrino model for $\lambda_{12k} \neq 0$ RPV couplings.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the slepton/sneutrino model for $\lambda_{i33} \neq 0$ RPV couplings. A combination of SR0A + SR1 + SR2 or SR0B + SR1 + SR2 is tested to detect the best expected limit; shown on the plot is the region (SR0A or SR0B) which is chosen to provide the best expected limit in combination with SR1 and SR2.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the gluino model for $\lambda_{12k} \neq 0$ RPV couplings.
The best expected exclusion power between signal regions at each signal point as is adopted in the limit calculation of the gluino model for $\lambda_{i33} \neq 0$ RPV couplings. A combination of SR0A + SR1 + SR2 or SR0B + SR1 + SR2 is tested to detect the best expected limit; shown on the plot is the region (SR0A or SR0B) which is chosen to provide the best expected limit in combination with SR1 and SR2.
The best expected exclusion power between the overlapping SR0C and SR0D at each signal point as is adopted in the limit combination of the GGM higgsino model.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0A. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/Z$ $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0A. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/h$ $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0A. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the slepton/sneutrino $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0A. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the gluino $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0A. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0B. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/Z$ $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0B. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/h$ $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0B. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the slepton/sneutrino $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0B. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the gluino $\lambda_{12k} \neq 0$ model fulfilling the selection criteria of SR0B. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the GGM Higgsino models with BR($\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$)=100% and BR($\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$)=50% fulfilling the selection criteria of SR0C. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the GGM Higgsino models with BR($\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$)=100% and BR($\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$)=50% fulfilling the selection criteria of SR0D. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR1. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/Z$ $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR1. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/h$ $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR1. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the slepton/sneutrino $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR1. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the gluino $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR1. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR2. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/Z$ $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR2. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the Wino $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ $W/h$ $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR2. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the slepton/sneutrino $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR2. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Acceptance ($A$) at particle level and selection efficiency ($\epsilon$) at reconstruction level for the gluino $\lambda_{i33} \neq 0$ model fulfilling the selection criteria of SR2. The implementation of "simple" cut selection at truth level uses the SimpleAnalysis framework and the code can be found in the Resources of the HepData entry for this paper.
Cutflow event yields in regions SR0A and SR0B for RPV models with the $\lambda_{12k} \neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 36.1$ fb$^{-1}$. The "Initial" number indicates the weighted number of events before any selection cut is applied. The last entries show the normalized number of events surviving the selection requirements of SR0A and SR0B.
Cutflow event yields in regions SR0C and SR0D for GGM Higgsino models with BR($\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$)=100% or BR($\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$)=50%, and $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0\tilde{\chi}_1^0$ mass of 400 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 36.1$ fb$^{-1}$. The "Initial" number indicates the weighted number of events before any selection cut is applied. The "Generator Filter" step is applied during the MC generation of the simulated events; the BR=100% sample has a generator filter of $\geq 4e/\mu$ leptons with $p_{\mathrm{T}}>4$ GeV and $|\eta|<2.8$, and the BR=50% sample has a generator filter of $\geq 4 e/\mu/\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$ GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}}^{\mathrm{visible}})>15$ GeV and $|\eta|<2.8$. The $ZZ$ selection cutflow step refers to the mass window cut for the leading and subleading $Z$ boson candidate between $81.2-101.2$ GeV and $61.2-101.2$ GeV, respectively. The last entries show the efficiency of events surviving the selection requirements defined in SR0C and SR0D.
Cutflow event yields in region SR1 for RPV models with the $\lambda_{i33} \neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 36.1$ fb$^{-1}$. The "Initial" number indicates the weighted number of events before any selection cut is applied. The last entries show the normalized number of events surviving the selection requirements of SR1.
Cutflow event yields in region SR2 for RPV models with the $\lambda_{i33} \neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 36.1$ fb$^{-1}$. The "Initial" number indicates the weighted number of events before any selection cut is applied. The last entries show the normalized number of events surviving the selection requirements of SR2.
Cross sections for the slepton/snuetrino model for different NLSP masses.
Two-particle pseudorapidity correlations are measured in $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV Pb+Pb, $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV $p$+Pb, and $\sqrt{s}$ = 13 TeV $pp$ collisions at the LHC, with total integrated luminosities of approximately 7 $\mu\mathrm{b}^{-1}$, 28 $\mathrm{nb}^{-1}$, and 65 $\mathrm{nb}^{-1}$, respectively. The correlation function $C_{\rm N}(\eta_1,\eta_2)$ is measured as a function of event multiplicity using charged particles in the pseudorapidity range $|\eta|<2.4$. The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by $1+\langle{a_1^2}\rangle \eta_1\eta_2$ in all collision systems over the full multiplicity range. The values of $\sqrt{\langle{a_1^2}\rangle}$ are consistent between the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of $\sqrt{\langle{a_1^2}\rangle}$ and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The $\eta$ distribution of the short-range component, after symmetrizing the proton and lead directions in $p$+Pb collisions, is found to be smaller than that in $pp$ collisions with comparable multiplicity.
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
a1 from fit C_N^sub(eta-) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta-) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta+) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta+) for Pb+Pb, pT>0.2GeV
a1 from fit r_N^sub(eta) for Pb+Pb, pT>0.5GeV
a1 from fit r_N^sub(eta) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta-) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta-) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta+) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta+) for p+Pb, pT>0.2GeV
a1 from fit r_N^sub(eta) for p+Pb, pT>0.5GeV
a1 from fit r_N^sub(eta) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta-) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta-) for pp, pT>0.2GeV
a1 from fit C_N^sub(eta+) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta+) for pp, pT>0.2GeV
a1 from fit r_N^sub(eta) for pp, pT>0.5GeV
a1 from fit r_N^sub(eta) for pp, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for pp, pT>0.2GeV
SRC for Pb+Pb, pT>0.5GeV, all pairs
SRC for Pb+Pb, pT>0.2GeV, all pairs
SRC for Pb+Pb, pT>0.5GeV, opposite pairs
SRC for Pb+Pb, pT>0.2GeV, opposite pairs
SRC for Pb+Pb, pT>0.5GeV, same pairs
SRC for Pb+Pb, pT>0.2GeV, same pairs
SRC for p+Pb, pT>0.5GeV, all pairs
SRC for p+Pb, pT>0.2GeV, all pairs
SRC for p+Pb, pT>0.5GeV, opposite pairs
SRC for p+Pb, pT>0.2GeV, opposite pairs
SRC for p+Pb, pT>0.5GeV, same pairs
SRC for p+Pb, pT>0.2GeV, same pairs
SRC for pp, pT>0.5GeV, all pairs
SRC for pp, pT>0.2GeV, all pairs
SRC for pp, pT>0.5GeV, opposite pairs
SRC for pp, pT>0.2GeV, opposite pairs
SRC for pp, pT>0.5GeV, same pairs
SRC for pp, pT>0.2GeV, same pairs
SRC for Pb+Pb, pT>0.5GeV
SRC for Pb+Pb, pT>0.2GeV
SRC for p+Pb, pT>0.5GeV
SRC for p+Pb, pT>0.2GeV
SRC for pp, pT>0.5GeV
SRC for pp, pT>0.2GeV
a1 for Pb+Pb, pT>0.5GeV
a1 for Pb+Pb, pT>0.2GeV
a1 for p+Pb, pT>0.5GeV
a1 for p+Pb, pT>0.2GeV
a1 for pp, pT>0.5GeV
a1 for pp, pT>0.2GeV
f(eta+) for p+Pb
f(eta+) for symmetrized p+Pb
f(eta+) for pp
f(eta+) for Pb+Pb
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.
The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.
The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.
The performance of jet energy resolution (JER) for jets with |y| < 2.1 evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data. The fit parameters are listed in a sperate table (Extras 1)
The relative magnitude of systematic uncertainties for per-pair normalized xJ distributions in 0-10% Xe+Xe centrality
The relative magnitude of systematic uncertainties for absolutely normalized xJ distributions in 0-10% Xe+Xe centrality
The relative magnitude of systematic uncertainties for rho distributions for leading jets in 0-10% Xe+Xe centrality
Per-pair normalized xJ distribution evaluated in four centrality intervals and given pT1 interval.
Per-pair normalized xJ distribution evaluated in four centrality intervals and given pT1 interval.
Per-pair normalized xJ distribution evaluated in four centrality intervals and given pT1 interval.
Absolutely normalized xJ distribution evaluated in four centrality intervals and given pT1 interval.
Absolutely normalized xJ distribution evaluated in four centrality intervals and given pT1 interval.
Absolutely normalized xJ distribution evaluated in four centrality intervals and given pT1 interval.
Per-pair normalized xJ distribution in Xe+Xe collisions.
Per-pair normalized xJ distribution in Pb+Pb collisions.
Per-pair normalized xJ distribution in Xe+Xe collisions.
Per-pair normalized xJ distribution in Pb+Pb collisions.
Per-pair normalized xJ distribution in Xe+Xe collisions.
Per-pair normalized xJ distribution in Pb+Pb collisions.
Absolutely normalized xJ distribution in Xe+Xe collisions.
Absolutely normalized xJ distribution in Xe+Xe collisions.
Absolutely normalized xJ distribution in Xe+Xe collisions.
Absolutely normalized xJ distribution in Xe+Xe collisions.
Absolutely normalized xJ distribution in Xe+Xe collisions.
Absolutely normalized xJ distribution in Xe+Xe collisions.
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of leading jet pT in the same centrality intervals.
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of leading jet pT in the same centrality intervals.
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of leading jet pT in the same centrality intervals.
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of subleading jet pT in the same centrality intervals.
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of subleading jet pT in the same centrality intervals.
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of subleading jet pT in the same centrality intervals.
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of leading jet pT in the same SUM ETFCal intervals (selecting equivalent event activity)
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of leading jet pT in the same SUM ETFCal intervals (selecting equivalent event activity)
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of leading jet pT in the same SUM ETFCal intervals (selecting equivalent event activity)
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of subleading jet pT in the same SUM ETFCal intervals (selecting equivalent event activity)
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of subleading jet pT in the same SUM ETFCal intervals (selecting equivalent event activity)
The ratios of Xe+Xe and Pb+Pb pair nuclear-modification factors, rho, evaluated as a function of subleading jet pT in the same SUM ETFCal intervals (selecting equivalent event activity)
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.