The HEPData database will be migrated to a new host between 08:00 and 09:00 (UTC) on 25th June 2025, leading to a few minutes of downtime.
Showing 10 of 505 results
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the absolute differential cross-section at particle level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at particle level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at particle level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute normalized cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the absolute differential cross-section at parton level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at parton level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at parton level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}| $normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.
Acceptance times efficiency for the full analysis selections as a function of the resonance mass mX in the hadhad, lephad SLT and lephad LTT trigger categories, and the combined lephad. The acceptance times efficiency is evaluated for HH to bbtautau decays, with respect to the targeted tau-lepton decay modes (lephad or hadhad).
Post-fit distribution of mHH in the hadhad channel.
Post-fit distribution of mHH in the lephad SLT channel.
Post-fit distribution of mHH in the lephad LTT channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of of di-b-jet mass in the hadhad channel.
Post-fit distribution of di-b-jet mass in the LTT lephad channel.
Post-fit distribution of di-b-jet mass in the LTT lephad channel.
BDT for SM HH in the hadhad channel
NN for SM HH in the lephad SLT channel
NN for SM HH in the lephad LTT channel
PNN for mX = 500 GeV resonant HH in the hadhad channel
PNN for mX = 500 GeV resonant HH in the lephad SLT channel
PNN for mX = 500 GeV resonant HH in the lephad LTT channel
PNN for mX = 1000 GeV resonant HH in the hadhad channel
PNN for mX = 1000 GeV resonant HH in the lephad SLT channel
PNN for mX = 1000 GeV resonant HH in the lephad LTT channel
Event yields as a function of log10(S/B) for data, background and non-resonant HH signal. Final discriminant bins from the hadhad, lephad SLT and lephad LTT categories are combined into bins of log10(S/B). The B is the fitted background yield assuming background-only hypothesis, and the signal S is scaled to the SM expected cross-section.
Observed and expected limits at 95% CL on the cross-section of the resonant HH production as a function of the scalar resonance mass mX.
Post-fit distribution of delta-R between the taus in the hadhad channel.
Post-fit distribution of delta-R between the b-tagged jets in the hadhad channel.
Post-fit distribution of delta-R between the taus in the lephad SLT channel.
Post-fit distribution of delta-R between the b-tagged jets in the lephad SLT channel.
Post-fit distribution of delta-pT between the tau and lepton in the lephad SLT channel.
Post-fit distribution of pT of the subleading b-tagged jet in the lephad SLT channel.
Post-fit distribution of MTW in the lephad SLT channel.
Post-fit distribution of missing transverse momentum in the lephad SLT channel.
Post-fit distribution of missing transverse momentum centrality in the lephad SLT channel.
Post-fit distribution of delta-phi between the Higgs boson candidates in the lephad SLT channel.
Post-fit distribution of delta-pT between the tau and lepton in the lephad LTT channel.
Post-fit distribution of delta-R between the taus in the lephad LTT channel.
Post-fit distribution of delta-phi between the lepton and the missing transverse momentum in the lephad LTT channel.
Post-fit distribution of delta-phi between the Higgs boson candidates in the lephad LTT channel.
Post-fit distribution of the total transverse momentum s in the lephad LTT channel.
PNN for mX = 300 GeV resonant HH in the hadhad channel
PNN for mX = 300 GeV resonant HH in the lephad SLT channel
PNN for mX = 300 GeV resonant HH in the lephad LTT channel
PNN for mX = 1600 GeV resonant HH in the hadhad channel
PNN for mX = 1600 GeV resonant HH in the lephad SLT channel
PNN for mX = 1600 GeV resonant HH in the lephad LTT channel
Local p-value of the background-only hypothesis as a function of the resonance mass.
A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.
Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.
Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.
Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the FCNC top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR2. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction before the fit (Pre-Fit) for the transverse momentum of the Z boson candidate in SR2. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the $D_{1}$ discriminant in the mass sideband CR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also separately shown, normalized to 500 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the $D_{2}^{u}$ discriminant in the mass sideband CR2. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also separately shown, normalized to 500 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the $D_{1}$ discriminant in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also separately shown, normalized to 50 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the $D_{2}^{u}$ discriminant in SR2. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also separately shown, normalized to 50 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZc LH coupling extraction. The distribution is for the $D_{1}$ discriminant in the mass sideband CR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZc LH signals are also separately shown, normalized to 500 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZc LH coupling extraction. The distribution is for the $D_{2}^{c}$ discriminant in the mass sideband CR2. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZc LH signals are also separately shown, normalized to 500 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZc LH coupling extraction. The distribution is for the $D_{1}$ discriminant in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZc LH signals are also separately shown, normalized to 50 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZc LH coupling extraction. The distribution is for the $D_{2}^{c}$ discriminant in SR2. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZc LH signals are also separately shown, normalized to 50 times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the leading lepton $p_{T}$ in the $t\bar{t}$ CR. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also shown separately, normalized to $10^{3}$ times the best fit of the signal yield. The last bin includes the overflow. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the third lepton $p_{T}$ in the $t\bar{t}$ CR. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also shown separately, normalized to $10^{3}$ times the best fit of the signal yield. The last bin includes the overflow. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the leading lepton $p_{T}$ in the $t\bar{t}Z$ CR. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also shown separately, normalized to $10^{3}$ times the best fit of the signal yield. The last bin includes the overflow. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC tZu LH coupling extraction. The distribution is for the $D_{1}$ discriminant in the $t\bar{t}Z$ CR. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The FCNC tZu LH signals are also shown separately, normalized to $10^{3}$ times the best fit of the signal yield. The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
A search for a charged Higgs boson, $H^{\pm}$, produced in top-quark decays, $t \rightarrow H^{\pm}b$, is presented. The search targets $H^{\pm}$ decays into a bottom and a charm quark, $H^{\pm} \rightarrow cb$. The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying $W$ boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing $b$-hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy $\sqrt{s}=13$ TeV between 2015 and 2018 with the ATLAS detector at CERN's Large Hadron Collider, amounting to an integrated luminosity of 139 fb$^{-1}$. Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions $\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ for charged Higgs boson masses between 60 and 160 GeV, assuming the SM production of the top-quark pairs.
The observed 95% CL upper limits on $\mathscr{B}=\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ as a function of $m_{H^{\pm}}$ and the expectation (dashed) under the background-only hypothesis. The inner green and outer yellow shaded bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits. The exclusion limits are presented for $m_{H^{\pm}}$ between 60 and 160 GeV with 10 GeV $m_{H^{\pm}}$ spacing and linear interpolation between adjacent mass points. Superimposed on the upper limits, the predictions from the 3HDM are shown, corresponding to three benchmark values for the parameters $X$, $Y$, and $Z$
Pre-fit event yields in each of the nine analysis regions. The $H^{\pm}$ signal yields for $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are normalised to $\mathscr{B}_{\mathrm{ref}}=1\%$. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among processes resulting from the data-based $t\bar{t}$ correction procedure.
Post-fit yields in each of the nine analysis regions considered. The total prediction is shown after the fit to data under the signal-plus-background hypothesis assuming $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV. The predicted yileds for the $H^{\pm}$ signal with $m_{H^{\pm}}=70$ GeV are also shown for reference. The best fit-values of $\mathscr{B}$ for $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are 0.16% and 0.07% respectively. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among nuisance parameters and among processes.
Signal selection efficiency ($\epsilon$) times acceptance ($A$) as a function of $H^{\pm}$. The estimated $\epsilon\times A$ arises from the lepton selection and triggering (∼30%) as well as jet selection and flavour tagging (∼10% or lower). The decrease of $\epsilon\times A$ for $m_{H^{\pm}}$ = 120 GeV and higher is expected from the kinematic constraint on the $H^{\pm}$ decay products due to the top-quark mass.
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed and expected exclusion limit in the gluino-neutralino mass plane at 95% CL combined using the signal region with the best expected sensitivity at each point, for the full Run-2 dataset corresponding to an integrated luminosity of $139~\mathrm{fb}^{-1}$, for $\gamma/Z$ (a) and $\gamma/h$ (b) signal models. The black solid line corresponds to the expected limits at 95% CL, with the light (yellow) bands indicating the 1$\sigma$ exclusions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves, the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties. For each point in the higgsino-bino parameter space, the labels indicate the best-expected signal region, where L, M and H mean SRL, SRM and SRH, respectively.
Observed and expected exclusion limit in the gluino-neutralino mass plane at 95% CL combined using the signal region with the best expected sensitivity at each point, for the full Run-2 dataset corresponding to an integrated luminosity of $139~\mathrm{fb}^{-1}$, for $\gamma/Z$ (a) and $\gamma/h$ (b) signal models. The black solid line corresponds to the expected limits at 95% CL, with the light (yellow) bands indicating the 1$\sigma$ exclusions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves, the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties. For each point in the higgsino-bino parameter space, the labels indicate the best-expected signal region, where L, M and H mean SRL, SRM and SRH, respectively.
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
A search for a long-lived, heavy neutral lepton ($\mathcal{N}$) in 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS detector at the Large Hadron Collider is reported. The $\mathcal{N}$ is produced via $W \rightarrow \mathcal{N} \mu$ or $W \rightarrow \mathcal{N} e$ and decays into two charged leptons and a neutrino, forming a displaced vertex. The $\mathcal{N}$ mass is used to discriminate between signal and background. No signal is observed, and limits are set on the squared mixing parameters of the $\mathcal{N}$ with the left-handed neutrino states for the $\mathcal{N}$ mass range $3$ GeV $< m_{\mathcal{N}} < 15$ GeV. For the first time, limits are given for both single-flavor and multiflavor mixing scenarios motivated by neutrino flavor oscillation results for both the normal and inverted neutrino-mass hierarchies.
Expected and observed 95% CL for the 1SFH e Dirac model.
Expected and observed 95% CL for the 1SFH e Majorana model.
Expected and observed 95% CL for the 1SFH mu Dirac model.
Expected and observed 95% CL for the 1SFH mu Majorana model.
Expected and observed 95% CL for the 2QDH NH Dirac model.
Expected and observed 95% CL for the 2QDH NH Majorana model.
Expected and observed 95% CL for the 2QDH IH Dirac model.
Expected and observed 95% CL for the 2QDH IH Majorana model.
Cutflow for six simulated signal channels showing the weighted number of expected events based on the single-flavour mixing model in the Majorana limit. Each column uses the generated signal sample with the mass hypothesis $m_N = 10$ GeV and proper decay length $c\tau_N = 10$ mm.
Cutflow for the six channels in data showing the number of events passing each successive signal selection for Majorana HNLs.
The event selection efficiency for each mass-lifetime point in all six studied channels. Shown is the fraction of the produced MC simulation events that pass all signal region selections. An entry of 0 indicates no events were selected.
The dominant signal uncertainty is due to differences in reconstruction of displaced vertices and tracks between data and MC. This is evaluated by comparing $K^{0}_{S} \rightarrow \pi^+\pi^-$ event yields in the VR and in MC produced with Pythia8.186 in bins of $p_\mathrm{T}$ and $r_\mathrm{DV}$. The data/MC ratio is normalized to the bin nearest the IP where the tracking and vertexing reconstruction algorithms are expected to be most robust. The symmetrized difference from 1.0 is applied to each signal vertex as a per-event systematic variation.
Expected and observed yields in the different analysis regions (prefit) for the 1SFH e Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH e Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH e Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH e Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH u Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH u Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH u Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH u Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (NH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (NH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (NH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (NH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (IH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (IH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (IH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (IH) Majorana model (10 GeV, 10mm).
The total displaced vertexing efficiency as a function of $r_{DV}$ for the custom configuration used in this analysis. The definition of the secondary vertex efficiency can be found in defined in \cite{ATL-PHYS-PUB-2019-013}. The efficiency is shown for $\mu-\mu\mu$, $\mu-\mu e$ and $\mu-ee$ signals with $m_N=10$~GeV and $c\tau_N=10$~mm.
Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected dilepton mass distributions in VR3L-STR without a fit to the data. The 'Other' category includes the negligible contributions from $t\bar{t}$ and $Z/\gamma^*$+jets processes. The hatched band contains the statistical uncertainty and the theoretical systematic uncertainties of the $WZ$/$ZZ$ prediction, which are the dominant sources of uncertainty. No fit is performed. The last bin contains the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95\% CLs upper limit on the cross section.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95$\%$ CLs upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
The combined $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution of VRLow-STR and SRLow-STR (left), and the same region with the $\Delta\phi(\boldsymbol{j}_{1,2},\boldsymbol{\mathit{p}}_{ ext{T}}^{ ext{miss}})<0.4$ requirement, used as a control region to normalize the $Z/\gamma^*+\mathrm{jets}$ process (right). Separate fits for the SR and VR are performed, as for the results in the paper, and the resulting distributions are merged. All statistical and systematic uncertainties are included in the hatched bands. The last bins contain the overflow.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.
Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Summary of the total uncertainty in the background prediction for each SR of the tt0L-low, tt0L-high, tt1L and tt2L analysis channels in the statistical combination. Their dominant contributions are indicated by individual lines. Individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
$E_{\text{T}}^{\text{miss}}$ distribution in SR0X for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRWX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRTX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Representative fit distribution in the different flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of selected reconstructed events divided by the acceptance.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.
The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.
Diphoton invariant mass in the signal region using a 0.1 GeV binning.
Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.
Parametrization of the $A_{X}$ factor, defined as the fraction of diphoton resonances satisfying the fiducial acceptance at the particle level, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.
The correction factor, $C_{X}$, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, and acceptance correction factor, $A_{X}$, defined as the fraction of diphoton resonances satisfying the fiducial acceptance at the particle level. Both are computed for NWA spin-0 models as a function of $m_{X}$.
Effect of event selections on a scalar MC signal sample generated for $m_{X}$ = 15 GeV and on the data. For the MC sample, the efficiencies are shown after applying event weights and a truth level filter that requires two photons with $p^{\gamma\gamma}_{T}>40$ GeV; for the data, the absolute yields are shown. The initial yields for data include a trigger preselection that is the OR of a list of single photon and diphoton triggers. The "2 $loose$ photons" step includes the kinematic acceptance cuts.
Parameterization of the Double Sided Crystal Ball function parameters describing the scalar mass resolution model as a function of $m_{X}$ [GeV].
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.