Search for heavy long-lived multi-charged particles in proton-proton collisions at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052003, 2019.
Inspire Record 1707957 DOI 10.17182/hepdata.85615

A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb$^{-1}$ collected in 2015 and 2016 from proton-proton collisions at $\sqrt{s}$ = 13 TeV are examined. Particles producing anomalously high ionization, consistent with long-lived massive particles with electric charges from |q|=2e to |q|=7e, are searched for. No events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. Multi-charged particles with masses between 50 GeV and 980-1220 GeV (depending on their electric charge) are excluded.

0 data tables match query

Search for excited electrons singly produced in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 803, 2019.
Inspire Record 1738845 DOI 10.17182/hepdata.90452

A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.

0 data tables match query

Properties of $g\rightarrow b\bar{b}$ at small opening angles in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052004, 2019.
Inspire Record 1711114 DOI 10.17182/hepdata.85697

The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to $b$-quark pairs is a unique probe into the properties of gluon fragmentation because identified $b$-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the $g\rightarrow b\bar{b}$ process are measured using 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-$k_t$ jet algorithm with radius parameter $R = 0.2$, are used to probe angular scales below the $R=0.4$ jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into $b$-quarks.

0 data tables match query

Search for long-lived neutral particles in $pp$ collisions at $\sqrt{s}$ = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 481, 2019.
Inspire Record 1719200 DOI 10.17182/hepdata.86552

This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 GeV and 400 GeV, produced from decays of heavy bosons with masses between 125 GeV and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb$^{-1}$ or 33.0 fb$^{-1}$ of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles.

0 data tables match query

Measurement of the ratio of cross sections for inclusive isolated-photon production in $pp$ collisions at $\sqrt s = 13$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 093, 2019.
Inspire Record 1717495 DOI 10.17182/hepdata.89370

The ratio of the cross sections for inclusive isolated-photon production in $pp$ collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb$^{-1}$ and 20.2 fb$^{-1}$, respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of $2.5$ ($5$) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for $Z$ boson production at 13 and 8 TeV using the decay channels $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

0 data tables match query

Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ cross sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 072009, 2019.
Inspire Record 1713423 DOI 10.17182/hepdata.88175

A measurement of the associated production of a top-quark pair ($t\bar{t}$) with a vector boson ($W$, $Z$) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using $36.1$ fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The $t\bar{t}Z$ and $t\bar{t}W$ production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are $\sigma_{t\bar{t}Z} = 0.95 \pm 0.08_{\mathrm{stat.}} \pm 0.10_{\mathrm{syst.}}$ pb and $\sigma_{t\bar{t}W} = 0.87 \pm 0.13_{\mathrm{stat.}} \pm 0.14_{\mathrm{syst.}}$ pb in agreement with the Standard Model predictions. The measurement of the $t\bar{t}Z$ cross section is used to set constraints on effective field theory operators which modify the $t\bar{t}Z$ vertex.

0 data tables match query

Measurement of jet-substructure observables in top quark, $W$ boson and light jet production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 08 (2019) 033, 2019.
Inspire Record 1724098 DOI 10.17182/hepdata.89324

A measurement of jet substructure variables is presented using data collected in 2016 by the ATLAS experiment at the LHC with proton-proton collisions at $\sqrt{s}=13$ TeV. Large-radius jets groomed with the trimming and soft-drop algorithms are studied. Dedicated event selections are used to study jets produced by light quarks or gluons, and hadronically decaying top quarks and $W$ bosons. The variables measured are sensitive to pronged substructure, and therefore are typically used for tagging jets from boosted massive particles. These include the energy correlation functions and the $N$-subjettiness variables. The number of subjets and the Les Houches angularity are also considered. The distributions of the substructure variables, corrected for detector effects, are compared to the predictions of various Monte Carlo event generators. They are also compared between the large-radius jets originating from light quarks or gluons, and hadronically decaying top quarks and $W$ bosons.

0 data tables match query

Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092004, 2019.
Inspire Record 1722036 DOI 10.17182/hepdata.89050

A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of $\sqrt{s} = $13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing $b$-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical $Z'$ bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross-sections, the $Z'$ boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1$-$3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 TeV to 0.9 TeV and from 2.0 TeV to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles.

0 data tables match query

Search for low-mass resonances decaying into two jets and produced in association with a photon using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 795 (2019) 56-75, 2019.
Inspire Record 1717700 DOI 10.17182/hepdata.85763

A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb$^{-1}$ of LHC proton-proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015-2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as $b$-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark $Z^\prime$ model and, separately, on generic Gaussian-shape contributions to the mass distributions, extending the current ATLAS constraints on dijet resonances to the mass range between 225 and 1100 GeV.

0 data tables match query

Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 798 (2019) 134942, 2019.
Inspire Record 1731814 DOI 10.17182/hepdata.89455

A search for a right-handed gauge boson $W_{\mathrm{R}}$, decaying into a boosted right-handed heavy neutrino $N_{\mathrm{R}}$, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb$^{-1}$. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared with to expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the $W_{\mathrm{R}}$ and $N_{\mathrm{R}}$ mass plane. Mass values of the $W_{\mathrm{R}}$ smaller than 3.8-5 TeV are excluded for $N_{\mathrm{R}}$ in the mass range 0.1-1.8 TeV.

0 data tables match query