Showing 10 of 1105 results
The coupling properties of the Higgs boson are studied in the four-lepton decay channel using 36.1 fb$^{-1}$ of $pp$ collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Cross sections are measured for the four key production modes in several exclusive regions of the Higgs boson production phase space and are interpreted in terms of coupling modifiers. The inclusive cross section times branching ratio for $H \rightarrow ZZ^*$ decay and for a Higgs boson absolute rapidity below 2.5 is measured to be $1.73^{+0.24}_{-0.23}$(stat.)$^{+0.10}_{-0.08}$(exp.)$\pm 0.04$(th.) pb compared to the Standard Model prediction of $1.34\pm0.09$ pb. In addition, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model. Constraints are placed on the non-Standard-Model CP-even and CP-odd couplings to $Z$ bosons and on the CP-odd coupling to gluons.
The expected number of SM Higgs boson events with a mass mH= 125.09 GeV in the mass range 118 < m4l < 129 GeV for an integrated luminosity of 36.1/fb and sqrt(s)= 13 TeV in each reconstructed event category, shown separately for each Stage-0 production bin. The ggF and bbH contributions are shown separately but both contribute to the same (ggF) production bin. Statistical and systematic uncertainties are added in quadrature.
The observed and expected numbers of signal and background events in the four-lepton decay channels for an integrated luminosity of 36.1/fb and at sqrt(s)= 13 TeV, assuming the SM Higgs boson signal with a mass m_{H} = 125.09 GeV . The second column shows the expected number of signal events for the full mass range while the subsequent columns correspond to the mass range of 118 < m4l < 129 GeV. In addition to the ZZ* background, the contribution of other backgrounds is shown, comprising the data-driven estimate from Table 4 and the simulation-based estimate of contributions from rare triboson and tbar{t}V processes. Statistical and systematic uncertainties are added in quadrature.
The expected and observed numbers of signal events in reconstructed event categories for an integrated luminosity of 36.1/fb at sqrt(s)= 13 TeV, together with signal acceptances for each Stage-0 production mode. Results are obtained in bins of BDT discriminants using coarse binning with several bins merged into one. Signal acceptances less than 0.0001 are set to 0.
The observed values of Sigma*BR(H->ZZ*), the SM expected cross section sBRsm and their ratio Sigma*BR/(Sigma*BR)_SM for the inclusive production and in each Stage-0 and reduced Stage-1 production bin for an integrated luminosity of 36.1/fb and at sqrt(s)=13 TeV. The bbH contribution is considered as a part of the ggF production bins. The upper limits correspond to the 95% CL obtained with pseudo-experiments using the CL_s method. The uncertainties are given as (stat.)+(exp.)+(th.) for Stage 0 and as (stat.)+(syst.) for reduced Stage 1. Values without uncertainity are 95% CL upper limits.
Signal acceptance obtained as the ratio of the number of simulated signal events satisfying the event selection criteria in each reconstructed event category over the total number of events generated in the phase space specified by a given reduced Stage-1 ggF production bin. Results are obtained in bins of BDT discriminants using coarse binning with several bins merged into one. Values less than 0.0001 are set to 0.
Signal acceptance obtained as the ratio of the number of simulated signal events satisfying the event selection criteria in each reconstructed event category over the total number of events generated in the phase space specified by the given reduced Stage-1 VBF and VH production bins. Results are obtained in bins of BDT discriminants using coarse binning with several bins merged into one. Values less than 0.0001 are set to 0.
The signal strengths mu for the inclusive production and in each Stage-0 and reduced Stage-1 production bin for an integrated luminosity of 36.1/fb and at sqrt(s)=13 TeV. The bbH contribution is considered as a part of the ggF production bins. The upper limits correspond to the 95% CL obtained with pseudo-experiments using the CL_s method. The uncertainties are given as (stat.)+(exp.)+(th.) for Stage 0 and as (stat.)+(syst.) for reduced Stage 1. Values without uncertainity are 95% CL upper limits.
Signal acceptance (in percent) obtained as the ratio of the number of simulated signal events satisfying the event selection criteria in each reconstructed event category to the total number of generated events, as predicted by the MadGraph5_aMC@NLO generator assuming the SM coupling tensor structure or the BSM tensor structure with ($\kappa_{SM}$ = 1, | $\kappa_{AVV}$ | $\neq$ 0).
Number of expected ggF Higgs boson events for an integrated luminosity of $\mathcal L=36.1 \text{fb}^{-1}$ and at $\sqrt{\mathrm{s}}=13$ TeV, as predicted by the MadGraph5_aMC@NLO generator assuming the SM coupling tensor structure or the BSM tensor structure with ($\kappa_{SM}=1$, $|\kappa_{Avv}|=6$). The highest-order SM predicition for the sum of the ggF, ttH and bbH contributions is also shown for comparison.
Number of expected VBF and VH Higgs boson events for an integrated luminosity of $\mathcal L=36.1 \text{fb}^{-1}$ and at $\sqrt{\mathrm{s}}=13$ TeV, as predicted by the MadGraph5_aMC@NLO generator assuming the SM coupling tensor structure or the BSM tensor structure with ($\kappa_{SM}=1$, $|\kappa_{Avv}|=5$). The highest-order SM predicition for the sum of the VBF and VH contributions is also shown for comparison.
Expected Correlation Matrix for Stage 0
Observed Correlation Matrix for Stage 0. As upper limits are derived for ttH and VH POIs using the observed data, the corresponding terms inside the matrix are set to zero.
Expected Correlation Matrix for Reduced Stage 1
Observed Correlation Matrix for Reduced Stage 1. As upper limits are derived for ttH and VH POIs using the observed data, the corresponding terms inside the matrix are set to zero.
Expected Covariance Matrix for Stage 0
Observed Covariance Matrix for Stage 0. As upper limits are derived for ttH and VH POIs using the observed data, the corresponding terms inside the matrix are set to zero.
Expected Covariance Matrix for Reduced Stage 1
Observed Covariance Matrix for Reduced Stage 1. As upper limits are derived for ttH and VH POIs using the observed data, the corresponding terms inside the matrix are set to zero.
Likelihood contours at 68% CL in the (Sigma_ggF*B , Sigma_VBF*B ) plane
Likelihood contours at 95% CL in the (Sigma_ggF*B , Sigma_VBF*B ) plane
Expected two-dimensional negative log-likelihood scans for $\kappa_{HVV}$ versus $\kappa_{AVV}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The couplings $\kappa_{Hgg}$ and $\kappa_{SM}$ are fixed to the SM value of one in the fit. The 95% CL exclusion limits are shown.
Observed two-dimensional negative log-likelihood scans for $\kappa_{HVV}$ versus $\kappa_{AVV}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The couplings $\kappa_{Hgg}$ and $\kappa_{SM}$ are fixed to the SM value of one in the fit. The 95% CL exclusion limits are shown.
Expected two-dimensional negative log-likelihood scans for $\kappa_{HVV}$ versus $\kappa_{AVV}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The coupling $\kappa_{Hgg}$ is fixed to the SM value of one in the fit. The coupling $\kappa_{SM}$ is left as a free parameter of the fit. The 95% CL exclusion limits are shown.
Observed two-dimensional negative log-likelihood scans for $\kappa_{HVV}$ versus $\kappa_{AVV}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The coupling $\kappa_{Hgg}$ is fixed to the SM value of one in the fit. The coupling $\kappa_{SM}$ is left as a free parameter of the fit. The 95% CL exclusion limits are shown.
Expected two-dimensional negative log-likelihood scans for $\kappa_{HVV}$ versus $\kappa_{SM}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The 95% CL exclusion limits are shown.
Observed two-dimensional negative log-likelihood scans for $\kappa_{HVV}$ versus $\kappa_{SM}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The 95% CL exclusion limits are shown.
Expected two-dimensional negative log-likelihood scans for $\kappa_{AVV}$ versus $\kappa_{SM}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The 95% CL exclusion limits are shown.
Observed two-dimensional negative log-likelihood scans for $\kappa_{AVV}$ versus $\kappa_{SM}$ coupling parameters using $\mathcal L=36.1 \text{fb}^{-1}$ of data and at $\sqrt{\mathrm{s}}=13$ TeV. The 95% CL exclusion limits are shown.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-2400. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1200. For signal, a squark direct decay model where squarks have mass of 900 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2400. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-3600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-1600. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR3j-1300. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1400. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1800. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2600. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-3000. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1700. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2000. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1800. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the high-Emiss region.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Model dependent upper limits on cross-section (pb) for the electroweak production are shown by grey numbers in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Total acceptance $\times$ efficiency of the electroweak channel. The total signal acceptance $\times$ efficiency is defined as the probability of an event passing the signal region selection when an electroweak gaugino pair is produced in a pp collision.
Total acceptance $\times$ efficiency of the strong channel. In white regions, no simulation sample is available. The left-upper triangle region is not allowed kinematically in wino-LSP scenarios. The total signal acceptance $\times$ efficiency is calculated relative to events in which the gluinos decay into electroweak gaugino pairs.
The generator-level acceptance for charginos produced in the electroweak channel as a function of the chargino $eta$ and chargino decay radius (at generator level).
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the electroweak channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The generator-level acceptance for charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level).
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in direct electroweak production with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in the strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
The event and tracklet generator-level acceptance and selection efficiency for a few electroweak signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few strong signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
Systematic uncertainties in the signal event yields at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.
Observed events, expected background for null signal, and expected signal yields for two benchmark models: electroweak channel with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) and strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. Also shown are the probability of a background-only experiment being more signal-like than observed ($p_0$) and the upper limit on the model-independent visible cross-section at 95\% CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to anti-correlation between different backgrounds.
Effects of systematic uncertainties on the signal exclusion significance at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the estimated number of the fake-tracklet background events is small.
Cross-section upper limits for the strong production, presented in unit of fb. Left-upper triangle region is unphysical because the wino mass is larger than the gluino mass.
A search for heavy resonances decaying into a pair of $Z$ bosons leading to $\ell^+\ell^-\ell^+\ell^-$ and $\ell^+\ell^-\nu\bar\nu$ final states, where $\ell$ stands for either an electron or a muon, is presented. The search uses proton proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider. Different mass ranges for the hypothetical resonances are considered, depending on the final state and model. The different ranges span between 200 GeV and 2000 GeV. The results are interpreted as upper limits on the production cross section of a spin 0 or spin 2 resonance. The upper limits for the spin 0 resonance are translated to exclusion contours in the context of Type I and Type II two-Higgs-doublet models, while those for the spin 2 resonance are used to constrain the Randall Sundrum model with an extra dimension giving rise to spin 2 graviton excitations.
Distribution of the four-lepton invariant mass (m4l) in the four-lepton search for the ggF-enriched category.
Distribution of the four-lepton invariant mass (m4l) in the four-lepton search for the VBF-enriched category.
Transverse mass mT in the llnunu search for the electron channel.
Transverse mass mT in the llnunu search for the muon channel.
Upper limits at 95% CL on the cross section times branching ratio as a function of the heavy resonance mass mH for the ggF production mode
Upper limits at 95% CL on the cross section times branching ratio as a function of the heavy resonance mass mH for the VBF production mode
Upper limits at 95% CL on the cross section for the ggF production model times branching ratio as a function of mH for an additioinal heavy scalar assuming a width of 1% of mH
Upper limits at 95% CL on the cross section for the ggF production model times branching ratio as a function of mH for an additioinal heavy scalar assuming a width of 5% of mH
Upper limits at 95% CL on the cross section for the ggF production model times branching ratio as a function of mH for an additioinal heavy scalar assuming a width of 10% of mH
Upper limits at 95% CL on the cross section times branching ratio for a KK graviton produced with k/M_{PI} = 1.
A search is conducted for new resonances decaying into a $W$ or $Z$ boson and a 125 GeV Higgs boson in the $\nu\bar{\nu}b\bar{b}$, $\ell^{\pm}{\nu}b\bar{b}$, and $\ell^+\ell^-b\bar{b}$ final states, where $\ell ^{\pm}= e^{\pm}$ or $\mu^{\pm}$, in $pp$ collisions at $\sqrt s = 13$ TeV. The data used correspond to a total integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider during the 2015 and 2016 data-taking periods. The search is conducted by examining the reconstructed invariant or transverse mass distributions of $Wh$ and $Zh$ candidates for evidence of a localised excess in the mass range of 220 GeV up to 5 TeV. No significant excess is observed and the results are interpreted in terms of constraints on the production cross-section times branching fraction of heavy $W^\prime$ and $Z^\prime$ resonances in heavy-vector-triplet models and the CP-odd scalar boson $A$ in two-Higgs-doublet models. Upper limits are placed at the 95 % confidence level and range between $9.0\times 10^{-4}$ pb and $8.1\times 10^{-1}$ pb depending on the model and mass of the resonance.
Upper limits on Zprime to Z h production cross section x branching fraction in pb
Upper limits on Wprime to W h production cross section x branching fraction in pb
Upper limits for the scaling factor of the production cross section for V’ times its branching fraction to Wh/Zh in Model A.
Upper limits on A to Z h production cross section x branching fraction in pb (gluon fusion production)
Upper limits on A to Z h production cross section x branching fraction in pb ( production with associated b-quarks)
Acceptance * Reconstruction efficiency for pp-> Zprime
Acceptance * Reconstruction efficiency for pp-> Zprime
Acceptance * Reconstruction efficiency for pp-> Wprime
Acceptance * Reconstruction efficiency for pp-> A (gluon fusion)
Acceptance * Reconstruction efficiency for pp-> A (gluon fusion)
Acceptance * Reconstruction efficiency for pp-> A (b-quark associated)
Acceptance * Reconstruction efficiency for pp-> A (b-quark associated)
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 10%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 20%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 30%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 40%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 50%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 60%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 70%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 80%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 0% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 90%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 1% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 2% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 3% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 4% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 5% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 6% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 7% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 8% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 9% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 10% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Upper limits at the 95% CL on the product of the production cross-section for pp->A and the branching fractions for A->Zh and h->bb evaluated by combining the 0-lepton and 2-lepton channels. The signal is smeared by a Breit-Wigner function with A boson width of 11% , assuming a combination of the gluon--gluon fusion and b-quark associated production modes with a bbA fraction of 0%.
Event distributions of mT,Vh for the 0-lepton channel in the resolved 1-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of mT,Vh for the 0-lepton channel in the resolved 2-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of m,Vh for the 1-lepton channel in the resolved 1-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of m,Vh for the 1-lepton channel in the resolved 2-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of mT,Vh for the 2-lepton channel in the resolved 1-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of m,Vh for the 2-lepton channel in the resolved 2-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of mT,Vh for the 0-lepton channel in the boosted 1-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of mT,Vh for the 0-lepton channel in the boosted 2-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of m,Vh for the 1-lepton channel in the boosted 1-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of m,Vh for the 1-lepton channel in the boosted 2-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of m,Vh for the 2-lepton channel in the boosted 1-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
Event distributions of m,Vh for the 2-lepton channel in the boosted 2-btag category. The background prediction is shown after a background-only maximum-likelihood fit to the data.
The inclusive and fiducial $t\bar{t}$ production cross-sections are measured in the lepton+jets channel using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and $b$-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive $t\bar{t}$ cross-section is measured with a precision of 5.7% to be $\sigma_{\text{inc}}(t\bar{t})$ = 248.3 $\pm$ 0.7 (stat.) $\pm$ 13.4 (syst.) $\pm$ 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is $\sigma_{\text{fid}}(t\bar{t})$ = 48.8 $\pm$ 0.1 (stat.) $\pm$ 2.0 (syst.) $\pm$ 0.9 (lumi.) pb with a precision of 4.5%.
The measured inclusive cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity
The measured fiducial cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity
A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).
The three isolated photons cross section with systematic and statistical uncertainties as a function of DPhi(Photon1,Photon2).
The three isolated photons cross section with systematic and statistical uncertainties as a function of DPhi(Photon1,Photon3).
The three isolated photons cross section with systematic and statistical uncertainties as a function of DPhi(Photon2,Photon3).
The three isolated photons cross section with systematic and statistical uncertainties as a function of |DEta(Photon1,Photon2)|.
The three isolated photons cross section with systematic and statistical uncertainties as a function of |DEta(Photon1,Photon3)|.
The three isolated photons cross section with systematic and statistical uncertainties as a function of |DEta(Photon2,Photon3)|.
The three isolated photons cross section with systematic and statistical uncertainties as a function of M(Photon1,Photon2).
The three isolated photons cross section with systematic and statistical uncertainties as a function of M(Photon1,Photon3).
The three isolated photons cross section with systematic and statistical uncertainties as a function of M(Photon2,Photon3).
The three isolated photons cross section with systematic and statistical uncertainties as a function of M(Photon1,Photon2,Photon3).
A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with non-universal Higgs boson masses.
<b>Kinematics 1</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 2</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 3</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 4</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Exclusion 1 (exp)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 1 (obs)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 2 (exp)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 2 (obs)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with pm1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with pm1σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive the limit, which is projected into the Δ m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) vs. m(χ̃<sub>2</sub><sup>0</sup>) plane. For Higgsino production, the chargino χ̃<sub>1</sub><sup>pm</sup> mass is assumed to be halfway between the two lightest neutralino masses, while m(χ̃<sub>2</sub><sup>0</sup>) = m(χ̃<sub>1</sub><sup>pm</sup>) is assumed for the wino--bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the 2ℓ+3ℓ combination of ATLAS Run 1 [41,42].
<b>Exclusion 3 (exp)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with ± 1 σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with ± 1 σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct slepton production. A fit of slepton signals to the m<sub>T2</sub><sup>100</sup> spectrum is used to derive the limit, which is projected into the Δ m(ℓ̃, χ̃<sub>1</sub><sup>0</sup>) vs. m(ℓ̃) plane. Slepton ℓ̃ refers to the scalar partners of left- and right-handed electrons and muons, which are assumed to be fourfold mass degenerate m(ẽ<sub>L</sub>) = m(ẽ<sub>R</sub>) = m(μ̃<sub>L</sub>) = m(μ̃<sub>R</sub>). The gray region is the ẽ<sub>R</sub> limit from LEP [20,24], while the blue region is the fourfold mass degenerate slepton limit from ATLAS Run 1 [41].
<b>Exclusion 3 (obs)</b> Expected 95% CL exclusion sensitivity (blue dashed line) with ± 1 σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with ± 1 σ<sub>theory</sub> (dotted red line) from signal cross-section uncertainties for simplified models of direct slepton production. A fit of slepton signals to the m<sub>T2</sub><sup>100</sup> spectrum is used to derive the limit, which is projected into the Δ m(ℓ̃, χ̃<sub>1</sub><sup>0</sup>) vs. m(ℓ̃) plane. Slepton ℓ̃ refers to the scalar partners of left- and right-handed electrons and muons, which are assumed to be fourfold mass degenerate m(ẽ<sub>L</sub>) = m(ẽ<sub>R</sub>) = m(μ̃<sub>L</sub>) = m(μ̃<sub>R</sub>). The gray region is the ẽ<sub>R</sub> limit from LEP [20,24], while the blue region is the fourfold mass degenerate slepton limit from ATLAS Run 1 [41].
<b>Upper Limits 1</b> The first two columns present observed (N<sub>obs</sub>) and expected (N<sub>exp</sub>) event yields in the inclusive signal regions. The latter are obtained by the background-only fit of the control regions, and the errors include both statistical and systematic uncertainties. The next two columns show the observed 95% CL upper limits on the visible cross-section (⟨εσ⟩<sub>obs</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows what the 95% CL upper limit on the number of signal events would be, given an observed number of events equal to the expected number (and +- 1 σ deviations from the expectation) of background events. The last column indicates the discovery p-value (p(s = 0)), which is capped at 0.5.
<b>Cutflow 1</b> Observed event yields and exclusion fit results with the signal strength parameter set to zero for the exclusive electroweakino and slepton signal regions. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.
<b>Acceptances 1</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 2</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 3</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 4</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 5</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 6</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 7</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>±</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 8</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 9</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 10</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 11</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 12</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 13</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 14</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 15</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 16</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 17</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 18</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 19</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 20</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 21</b> Truth acceptances for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 22</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 23</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 24</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 25</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 26</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 27</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 28</b> Truth acceptances for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>4</sup>.
<b>Acceptances 29</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 30</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 31</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 32</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 33</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Acceptances 34</b> Truth acceptances for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Numbers overlaid on the mass planes are the acceptance × 10<sup>3</sup>.
<b>Efficiencies 1</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 2</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 3</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 4</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 5</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 6</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 7</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 8</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 9</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 10</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 11</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 12</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 13</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 14</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 15</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 16</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 17</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 18</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 19</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 20</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 21</b> Efficiencies for the Higgsino χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 22</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 23</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 24</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 25</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 26</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 27</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 28</b> Efficiencies for the Higgsino χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> production process in the inclusive SRℓℓ-m<sub>ℓℓ</sub> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 29</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 30</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 31</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 32</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 33</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Efficiencies 34</b> Efficiencies for the ℓ̃ℓ̃ production in the inclusive SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Efficiencies are computed as the ``acceptance times efficiency" divided by the acceptance. The black line indicates the maximum allowed value of Δ m or m<sub>T2</sub> for the inclusive signal region under study.
<b>Cross-Sections 1</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 2</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 3</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 4</b> Cross-sections of the Higgsino signal grid for each production process denoted in the caption.
<b>Cross-Sections 5</b> Cross-sections of the wino--bino signal grid for each production process in the caption.
<b>Cross-Sections 6</b> Cross-sections of the wino--bino signal grid for each production process in the caption.
<b>Cross-Sections 7</b> Total cross-sections of the slepton simplified model signal grid. Slepton refers to a the scalar partners of the left- and right-handed electrons and muons, which are assumed to be mass degenerate m(ẽ<sub>L</sub>) = m(ẽ<sub>R</sub>) = m(μ̃<sub>L</sub>) = m(μ̃<sub>R</sub>).
<b>Kinematics 5</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 6</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 7</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 8</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 9</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 10</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 11</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 12</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 13</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 14</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 15</b> Distributions after the background-only fit of kinematic variables used to define selections common to all signal regions, i.e. not including requirements specific to the electroweakino or slepton SR definitions. Blue arrows in the upper panel denote the final requirement used to define the common SR, otherwise all selections are applied. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The first (last) bin includes underflow (overflow). Benchmark Higgsino H̃ and slepton ℓ̃ signals are overlaid as dashed lines. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Upper Limits 2</b> Numbers show 95% CL model-dependent upper limits on the inclusive Higgsino signal cross-sections.
<b>Upper Limits 3</b> Numbers show 95% CL model-dependent upper limits on the inclusive Higgsino signal cross-sections.
<b>Upper Limits 4</b> Numbers show 95% CL model-dependent upper limits on the inclusive signal cross-sections of the wino--bino model.
<b>Upper Limits 5</b> Numbers show 95% CL model-dependent upper limits on the inclusive signal cross-sections of the wino--bino model.
<b>Upper Limits 6</b> Numbers show the 95% CL model-dependent upper limits on the slepton signal cross-sections, assuming a fourfold mass degeneracy m(ẽ<sub>L,R</sub>) = m(μ̃<sub>L,R</sub>).
<b>Upper Limits 7</b> Numbers show the 95% CL model-dependent upper limits on the slepton signal cross-sections, assuming a fourfold mass degeneracy m(ẽ<sub>L,R</sub>) = m(μ̃<sub>L,R</sub>).
<b>Upper Limits 8</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the ± 1σ and ± 2σ uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the χ̃<sub>2</sub><sup>0</sup> and χ̃<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive this limit.
<b>Upper Limits 9</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the ± 1σ and ± 2σ uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the χ̃<sub>2</sub><sup>0</sup> and χ̃<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive this limit.
<b>Upper Limits 10</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the ± 1σ and ± 2σ uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the χ̃<sub>2</sub><sup>0</sup> and χ̃<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>ℓℓ</sub> spectrum is used to derive this limit.
<b>Cutflow 2</b> Observed event yields and exclusion fit results with the signal strength parameter set to zero for the exclusive electroweakino and slepton signal regions. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.
<b>Cutflow 3</b> Observed event yields and background-only fit results for the inclusive electroweakino and slepton signal regions. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.
<b>Exclusion 4</b> Nominal observed and expected CLs values for Higgsino signals.
<b>Exclusion 5</b> Nominal observed and expected CLs values for wino--bino signals.
<b>Exclusion 6</b> Nominal observed and expected CLs values for slepton signals.
<b>Upper Limits 11</b> Upper limits on observed (expected) Higgsino simplified model signal cross section σ<sub>obs (exp)</sub><sup>95</sup> and signal strength σ<sub>obs (exp)</sub><sup>95</sup> / σ<sub>theory</sub>.
<b>Upper Limits 12</b> Upper limits on observed (expected) wino--bino simplified model signal cross section σ<sub>obs (exp)</sub><sup>95</sup> and signal strength σ<sub>obs (exp)</sub><sup>95</sup> / σ<sub>theory</sub>.
<b>Upper Limits 13</b> Upper limits on observed (expected) slepton simplified model signal cross section σ<sub>obs (exp)</sub><sup>95</sup> and signal strength σ<sub>obs (exp)</sub><sup>95</sup> / σ<sub>theory</sub>.
<b>Cutflow 4</b> Event counts for Higgsino H and slepton ℓ signals after sequential selections for the inclusive SRℓℓ-m<sub>ℓℓ</sub> and SRℓℓ-m<sub>T2</sub><sup>100</sup> regions. Weighted events are normalised to mathcalL = 36.1 fb<sup>-1</sup> and the inclusive cross section σ, while raw MC events are also shown. The generator filter with efficiency ε<sub>filt</sub> applied to the Higgsino signal requires truth E<sub>T</sub><sup>miss</sup> > 50 GeV and at least 2 leptons with p<sub>T</sub> > 3 GeV, while only the E<sub>T</sub><sup>miss</sup> > 50 GeV requirement is applied to the slepton signal. The mathcalB refers to the branching ratio Z<sup>(*)</sup> → ℓ<sup>+</sup>ℓ<sup>-</sup> in the Higgsino processes. ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions.
<b>Cutflow 5</b> Event counts for the χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>+</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement for selections common to all signal regions (SRs), followed by those optimised for Higgsinos and sleptons. ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
<b>Cutflow 6</b> Event counts for the χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>-</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement for selections common to all signal regions (SRs), followed by those optimised for Higgsinos and sleptons. ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
<b>Cutflow 7</b> Event counts for the χ̃<sub>2</sub><sup>0</sup>χ̃<sub>1</sub><sup>0</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement followed by those optimised for Higgsinos and sleptons. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
<b>Cutflow 8</b> Event counts for the χ̃<sub>1</sub><sup>+</sup>χ̃<sub>1</sub><sup>-</sup> process of the Higgsino m(χ̃<sub>2</sub><sup>0</sup>, χ̃<sub>1</sub><sup>0</sup>) = (110, 100) GeV signal and sequentially with each addition requirement for selections common to all signal regions (SRs). ``Lepton truth matching" requires that the selected leptons are consistent with being decay products of the SUSY process. ``Lepton author 16 veto" removes a class of electron candidates reconstructed with algorithms designed to identify photon conversions. Weighted events are normalised to 36.1 fb<sup>-1</sup> and the raw Monte Carlo events are also displayed.
The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb$^{-1}$. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-$k_t$ algorithm with radius parameter $R=0.4$ and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements.
Measured cross sections for isolated-photon plus jet production as a function of $E_{\rm T}^{\gamma}$.
Measured cross sections for isolated-photon plus jet production as a function of $p_{\rm T}^{\rm jet-lead}$.
Measured cross sections for isolated-photon plus jet production as a function of $\Delta\phi^{\rm \gamma-jet\ lead}$.
Measured cross sections for isolated-photon plus jet production as a function of $m^{\gamma-\rm jet}$.
Measured cross sections for isolated-photon plus jet production as a function of $|\cos\theta^{\star}|$.
Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and $t\bar{t}$ system kinematic observables using proton--proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV. The data set corresponds to an integrated luminosity of $36.1$ fb$^{-1}$, recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum $p_{\rm T} > 500$ GeV and a second with $p_{\rm T}>350$ GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a $b$-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ values. The cross-section for $t\bar{t}$ production in the fiducial phase-space region is $292 \pm 7 \ \rm{(stat)} \pm 76 \rm{(syst)}$ fb, to be compared to the theoretical prediction of $384 \pm 36$ fb.
inclusive absolute differential cross-section at particle level
$p_{T}^{t,1}$ absolute differential cross-section at particle level
$|{y}^{t,1}|$ absolute differential cross-section at particle level
$p_{T}^{t,2}$ absolute differential cross-section at particle level
$|{y}^{t,2}|$ absolute differential cross-section at particle level
$m^{t\bar{t}}$ absolute differential cross-section at particle level
$p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level
$|y^{t\bar{t}}|$ absolute differential cross-section at particle level
$\chi^{t\bar{t}}$ absolute differential cross-section at particle level
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at particle level
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at particle level
$\Delta \phi(t_{1}, t_{2})$ absolute differential cross-section at particle level
$H_{T}^{t\bar{t}}$ absolute differential cross-section at particle level
$|\cos\theta^{*}|$ absolute differential cross-section at particle level
$p_{T}^{t,1}$ normalized differential cross-section at particle level
$|{y}^{t,1}|$ normalized differential cross-section at particle level
$p_{T}^{t,2}$ normalized differential cross-section at particle level
$|{y}^{t,2}|$ normalized differential cross-section at particle level
$m^{t\bar{t}}$ normalized differential cross-section at particle level
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level
$\Delta \phi(t_{1}, t_{2})$ normalized differential cross-section at particle level
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level
$|\cos\theta^{*}|$ normalized differential cross-section at particle level
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at particle level
$p_{T}^{t,1}$ correlation matrix for the absolute differential cross-section at particle level
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at particle level
$p_{T}^{t,1}$ correlation matrix for the normalized differential cross-section at particle level
$|{y}^{t,1}|$ covariance matrix for the absolute differential cross-section at particle level
$|{y}^{t,1}|$ correlation matrix for the absolute differential cross-section at particle level
$|{y}^{t,1}|$ covariance matrix for the normalized differential cross-section at particle level
$|{y}^{t,1}|$ correlation matrix for the normalized differential cross-section at particle level
$p_{T}^{t,2}$ covariance matrix for the absolute differential cross-section at particle level
$p_{T}^{t,2}$ correlation matrix for the absolute differential cross-section at particle level
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at particle level
$p_{T}^{t,2}$ correlation matrix for the normalized differential cross-section at particle level
$|{y}^{t,2}|$ covariance matrix for the absolute differential cross-section at particle level
$|{y}^{t,2}|$ correlation matrix for the absolute differential cross-section at particle level
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at particle level
$|{y}^{t,2}|$ correlation matrix for the normalized differential cross-section at particle level
$m^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at particle level
$m^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at particle level
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level
$m^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at particle level
$p_{T}^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at particle level
$p_{T}^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at particle level
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level
$p_{T}^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at particle level
$|y^{t\bar{t}}|$ covariance matrix for the absolute differential cross-section at particle level
$|y^{t\bar{t}}|$ correlation matrix for the absolute differential cross-section at particle level
$|y^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level
$|y^{t\bar{t}}|$ correlation matrix for the normalized differential cross-section at particle level
$\chi^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at particle level
$\chi^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at particle level
$\chi^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level
$\chi^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at particle level
$|y_{B}^{t\bar{t}}|$ covariance matrix for the absolute differential cross-section at particle level
$|y_{B}^{t\bar{t}}|$ correlation matrix for the absolute differential cross-section at particle level
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level
$|y_{B}^{t\bar{t}}|$ correlation matrix for the normalized differential cross-section at particle level
$|p_{out}^{t\bar{t}}|$ covariance matrix for the absolute differential cross-section at particle level
$|p_{out}^{t\bar{t}}|$ correlation matrix for the absolute differential cross-section at particle level
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level
$|p_{out}^{t\bar{t}}|$ correlation matrix for the normalized differential cross-section at particle level
$\Delta \phi(t_{1}, t_{2})$ covariance matrix for the absolute differential cross-section at particle level
$\Delta \phi(t_{1}, t_{2})$ correlation matrix for the absolute differential cross-section at particle level
$\Delta \phi(t_{1}, t_{2})$ covariance matrix for the normalized differential cross-section at particle level
$\Delta \phi(t_{1}, t_{2})$ correlation matrix for the normalized differential cross-section at particle level
$H_{T}^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at particle level
$H_{T}^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at particle level
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level
$H_{T}^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at particle level
$|\cos\theta^{*}|$ covariance matrix for the absolute differential cross-section at particle level
$|\cos\theta^{*}|$ correlation matrix for the absolute differential cross-section at particle level
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at particle level
$|\cos\theta^{*}|$ correlation matrix for the normalized differential cross-section at particle level
Statistical correlation matrix for the absolute differential cross-section of all 13 variables at particle level. The observables are arranged as follows: leading top pT - ${p_{{T}}}^{t,1}$ [bins 1-8], leading top rapidity - $|y^{t,1}|$ [bins 9-14], subleading top pT - ${p_{{T}}}^{t,2}$ [bins 15-21], subleading top rapidity - $|y^{t,2}|$ [bins 22-27], ttbar mass - $m^{t\bar{t}}$ [bins 28-37], ttbar pT - ${p_{{T}}}^{t\bar{t}}$ [bins 38-43], ttbar rapidity - $|y^{t\bar{t}}|$ [bins 44-49], chi ttbar - ${\chi}^{t\bar{t}}$ [bins 50-56], delta phi ttbar - ${\Delta\phi}(t_1,t_2)$ [bins 57-60], ttbar out of plane momentum - $|p_{out}^{t\bar{t}}|$ [bins 61-67], yboost ttbar - $|y_{B}^{t\bar{t}}|$ [68-74], cos theta star - $|{\cos{\theta}^{\star}}|$ [bins 75-80], HT ttbar - $H_{T}^{t\bar{t}}$ [bins 81-87].
Statistical correlation matrix for the normalized differential cross-section of all 13 variables at particle level. The observables are arranged as follows: leading top pT - ${p_{{T}}}^{t,1}$ [bins 1-8], leading top rapidity - $|y^{t,1}|$ [bins 9-14], subleading top pT - ${p_{{T}}}^{t,2}$ [bins 15-21], subleading top rapidity - $|y^{t,2}|$ [bins 22-27], ttbar mass - $m^{t\bar{t}}$ [bins 28-37], ttbar pT - ${p_{{T}}}^{t\bar{t}}$ [bins 38-43], ttbar rapidity - $|y^{t\bar{t}}|$ [bins 44-49], chi ttbar - ${\chi}^{t\bar{t}}$ [bins 50-56], delta phi ttbar - ${\Delta\phi}(t_1,t_2)$ [bins 57-60], ttbar out of plane momentum - $|p_{out}^{t\bar{t}}|$ [bins 61-67], yboost ttbar - $|y_{B}^{t\bar{t}}|$ [68-74], cos theta star - $|{\cos{\theta}^{\star}}|$ [bins 75-80], HT ttbar - $H_{T}^{t\bar{t}}$ [bins 81-87].
${p_{{T}}}^{t}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|y^{t}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t,1}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|y^{t,1}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t,2}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{y}^{t,2}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$m^{t\bar{t}}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t\bar{t}}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{y}^{t\bar{t}}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${\chi}^{t\bar{t}}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{y_{B}}^{t\bar{t}}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{p_{out}}^{t\bar{t}}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${\Delta\phi}(t_1,t_2)$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${H_{T}}^{t\bar{t}}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{\cos{\theta}^{\star}}|$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t}$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|y^{t}|$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t,1}$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|y^{t,1}|$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t,2}$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{y}^{t,2}|$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$m^{t\bar{t}}$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t\bar{t}}$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{y_{B}}^{t\bar{t}}|$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{p_{out}}^{t\bar{t}}|$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${\Delta\phi}(t_1,t_2)$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
$|{\cos{\theta}^{\star}}|$ normalized differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
${p_{{T}}}^{t}$ covariance matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t}$ correlation matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t}$ covariance matrix for the normalized differential cross-section at parton level
${p_{{T}}}^{t}$ correlation matrix for the normalized differential cross-section at parton level
$|y^{t}|$ covariance matrix for the absolute differential cross-section in parton level
$|y^{t}|$ correlation matrix for the absolute differential cross-section at parton level
$|y^{t}|$ covariance matrix for the normalized differential cross-section in parton level
$|y^{t}|$ correlation matrix for the normalized differential cross-section at parton level
${p_{{T}}}^{t,1}$ covariance matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t,1}$ correlation matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t,1}$ covariance matrix for the normalized differential cross-section at parton level
${p_{{T}}}^{t,1}$ correlation matrix for the normalized differential cross-section at parton level
$|y^{t,1}|$ covariance matrix for the absolute differential cross-section at parton level
$|y^{t,1}|$ correlation matrix for the absolute differential cross-section at parton level
$|y^{t,1}|$ covariance matrix for the normalized differential cross-section at parton level
$|y^{t,1}|$ correlation matrix for the normalized differential cross-section at parton level
${p_{{T}}}^{t,2}$ covariance matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t,2}$ correlation matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t,2}$ covariance matrix for the normalized differential cross-section at parton level
${p_{{T}}}^{t,2}$ correlation matrix for the normalized differential cross-section at parton level
$|{y}^{t,2}|$ covariance matrix for the absolute differential cross-section at parton level
$|{y}^{t,2}|$ correlation matrix for the absolute differential cross-section at parton level
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at parton level
$|{y}^{t,2}|$ correlation matrix for the normalized differential cross-section at parton level
$m^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at parton level
$m^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at parton level
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level
$m^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at parton level
${p_{{T}}}^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at parton level
${p_{{T}}}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level
${p_{{T}}}^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at parton level
$|{y}^{t\bar{t}}|$ covariance matrix for the absolute differential cross-section at parton level
$|{y}^{t\bar{t}}|$ correlation matrix for the absolute differential cross-section at parton level
$|{y}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level
$|{y}^{t\bar{t}}|$ correlation matrix for the normalized differential cross-section at parton level
${\chi}^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at parton level
${\chi}^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at parton level
${\chi}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level
${\chi}^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at parton level
$|{y_{B}}^{t\bar{t}}|$ covariance matrix for the absolute differential cross-section at parton level
$|{y_{B}}^{t\bar{t}}|$ correlation matrix for the absolute differential cross-section at parton level
$|{y_{B}}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level
$|{y_{B}}^{t\bar{t}}|$ correlation matrix for the normalized differential cross-section at parton level
$|{p_{out}}^{t\bar{t}}|$ covariance matrix for the absolute differential cross-section at parton level
$|{p_{out}}^{t\bar{t}}|$ correlation matrix for the absolute differential cross-section at parton level
$|{p_{out}}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level
$|{p_{out}}^{t\bar{t}}|$ correlation matrix for the normalized differential cross-section at parton level
${\Delta\phi}(t_1,t_2)$ covariance matrix for the absolute differential cross-section at parton level
${\Delta\phi}(t_1,t_2)$ correlation matrix for the absolute differential cross-section at parton level
${\Delta\phi}(t_1,t_2)$ covariance matrix for the normalized differential cross-section at parton level
${\Delta\phi}(t_1,t_2)$ correlation matrix for the normalized differential cross-section at parton level
$H_{T}^{t\bar{t}}$ covariance matrix for the absolute differential cross-section at parton level
$H_{T}^{t\bar{t}}$ correlation matrix for the absolute differential cross-section at parton level
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level
$H_{T}^{t\bar{t}}$ correlation matrix for the normalized differential cross-section at parton level
$|{\cos{\theta}^{\star}}|$ covariance matrix for the absolute differential cross-section at parton level
$|{\cos{\theta}^{\star}}|$ correlation matrix for the absolute differential cross-section at parton level
$|{\cos{\theta}^{\star}}|$ covariance matrix for the normalized differential cross-section at parton level
$|{\cos{\theta}^{\star}}|$ correlation matrix for the normalized differential cross-section at parton level
Statistical correlation matrix for the absolute differential cross-section of all 15 variables at parton level. The observables are arranged as follows: random top pT - ${p_{{T}}}^{t}$ [bins 1-8], random top rapidity - $|y^{t}|$ [bins 9-16], leading top pT - ${p_{{T}}}^{t,1}$ [bins 17-24], leading top rapidity - $|y^{t,1}|$ [bins 25-32], subleading top pT - ${p_{{T}}}^{t,2}$ [bins 33-39], subleading top rapidity - $|y^{t,2}|$ [bins 40-46], ttbar mass - $m^{t\bar{t}}$ [bins 48-57], ttbar pT - ${p_{{T}}}^{t\bar{t}}$ [bins 58-63], ttbar rapidity - $|y^{t\bar{t}}|$ [bins 66-71], chi ttbar ${\chi}^{t\bar{t}}$ - [bins 74-80], delta phi ttbar - ${\Delta\phi}(t_1,t_2)$ [bins 81-84], ttbar out of plane momentum - $|p_{out}^{t\bar{t}}|$ [bins 85-91], yboost ttbar - $|y_{B}^{t\bar{t}}|$ [92-98], cos theta star - $|{\cos{\theta}^{\star}}|$ [bins 99-104], HT ttbar $H_{T}^{t\bar{t}}$ [bins 105-114].
Statistical correlation matrix for the normalized differential cross-section of all 15 variables at parton level. The observables are arranged as follows: random top pT - ${p_{{T}}}^{t}$ [bins 1-8], random top rapidity - $|y^{t}|$ [bins 9-16], leading top pT - ${p_{{T}}}^{t,1}$ [bins 17-24], leading top rapidity - $|y^{t,1}|$ [bins 25-32], subleading top pT - ${p_{{T}}}^{t,2}$ [bins 33-39], subleading top rapidity - $|y^{t,2}|$ [bins 40-46], ttbar mass - $m^{t\bar{t}}$ [bins 48-57], ttbar pT - ${p_{{T}}}^{t\bar{t}}$ [bins 58-63], ttbar rapidity - $|y^{t\bar{t}}|$ [bins 66-71], chi ttbar ${\chi}^{t\bar{t}}$ - [bins 74-80], delta phi ttbar - ${\Delta\phi}(t_1,t_2)$ [bins 81-84], ttbar out of plane momentum - $|p_{out}^{t\bar{t}}|$ [bins 85-91],yboost ttbar - $|y_{B}^{t\bar{t}}|$ [92-98], cos theta star - $|{\cos{\theta}^{\star}}|$ [bins 99-104], HT ttbar $H_{T}^{t\bar{t}}$ [bins 105-114].
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.