A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino ($\tilde\chi^0_1$) is reported. It exploits LHC proton$-$proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing $b$-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless $\tilde\chi^0_1$. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to $b\bar{b}\tilde\chi^0_1$, $t\bar{t}\tilde\chi^0_1$ and $t\bar{b}\tilde\chi^-_1$ / $\bar{t}b\tilde\chi^+_1$.
A search for the production of three Higgs bosons ($HHH$) in the $b\bar{b}b\bar{b}b\bar{b}$ final state is presented. The search uses $126~\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis targets both non-resonant and resonant production of $HHH$. The resonant interpretations primarily consider a cascade decay topology of $X\rightarrow SH\rightarrow HHH$ with masses of the new scalars $X$ and $S$ up to 1.5 TeV and 1 TeV, respectively. In addition to scenarios where $S$ is off-shell, the non-resonant interpretation includes a search for standard model (SM) $HHH$ production, with limits on the tri-linear and quartic Higgs self-coupling set. No evidence for $HHH$ production is observed. An upper limit of 59 fb is set, at 95% confidence level, on the cross-section for Standard-Model $HHH$ production.
A search for cascade decays of charged sleptons and sneutrinos using final states characterized by three leptons (electrons or muons) and missing transverse momentum is presented. The analysis is based on a dataset with 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. This paper focuses on a supersymmetric scenario that is motivated by the muon anomalous magnetic moment observation, dark mattter relic density abundance, and electroweak naturalness. A mass spectrum involving light higgsinos and heavier sleptons with a bino at intermediate mass is targeted. No significant deviation from the Standard Model expectation is observed. This search enables to place stringent constraints on this model, excluding at the 95% confidence level charged slepton and sneutrino masses up to 450 GeV when assuming a lightest neutralino mass of 100 GeV and mass-degenerate selectrons, smuons and sneutrinos.
A search for pair-production of vector-like leptons is presented, considering their decays into a third-generation Standard Model (SM) quark and a vector leptoquark ($U_1$) as predicted by an ultraviolet-complete extension of the SM, referred to as the '4321' model. Given the assumed decay of $U_1$ into third-generation SM fermions, the final state can contain multiple $\tau$-leptons and $b$-quarks. This search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. No significant excess above the SM background prediction is observed, and 95% confidence level limits on the cross-section times branching ratio are derived as a function of the vector-like lepton mass. A lower observed (expected) limit of 910 GeV (970 GeV) is set on the vector-like lepton mass. Additionally, the results are interpreted for a supersymmetric model with an $R$-parity violating coupling to the third-generation quarks and leptons. Lower observed (expected) limits are obtained on the higgsino mass at 880 GeV (940 GeV) and on the wino mass at 1170 GeV (1170 GeV).
This paper presents the observation of four-top-quark ($t\bar{t}t\bar{t}$) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured $t\bar{t}t\bar{t}$ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The $t\bar{t}t\bar{t}$ production cross section is measured to be $22.5^{+6.6}_{-5.5}$ fb, consistent with the SM prediction of $12.0 \pm 2.4$ fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect $t\bar{t}t\bar{t}$ production.
A measurement of the Standard Model Higgs boson produced in association with a $W$ or $Z$ boson and decaying into a pair of $\tau$-leptons is presented. This search is based on proton-proton collision data collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 140 fb$^{-1}$. For the Higgs boson candidate, only final states with at least one $\tau$-lepton decaying hadronically ($\tau\rightarrow \mathrm{hadrons} + \nu_\tau$) are considered. For the vector bosons, only leptonic decay channels are considered: $Z \rightarrow \ell\ell$ and $W\rightarrow \ell\nu_\ell$, with $\ell=e,\mu$. An excess of events over the expected background is found with an observed (expected) significance of 4.2 (3.6) standard deviations, providing evidence of the Higgs boson produced in association with a vector boson and decaying into a pair of $\tau$-leptons. The ratio of the measured cross-section to the Standard Model prediction is $\mu_{\text{VH}}^{\tau\tau} = 1.28\ ^{+0.30}_{-0.29}\ (\mathrm{stat.})\ ^{+0.25}_{-0.21}\ (\mathrm{syst.})$. This result represents the most accurate measurement of the \vh process achieved to date.
A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.
The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $σ(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $σ(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $σ(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=σ(tq)/σ(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/Λ^2 < 0.06$ and $-0.87 < C_{ϕQ}^{3}/Λ^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $σ(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
Three searches for the direct production of $\tau$-sleptons or charginos and neutralinos in final states with at least two hadronically decaying $\tau$-leptons are presented. For chargino and neutralino production, decays via intermediate $\tau$-sleptons or $W$ and $h$ bosons are considered. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of $139\,$fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed and supersymmetric particle mass limits at 95% confidence level are obtained in simplified models. For direct production of $\tilde~{\chi}^+_1\tilde~{\chi}^-_1$, chargino masses are excluded up to 970 GeV, while $\tilde~{\chi}^{\pm}_1$ and $\tilde~{\chi}^0_2$ masses up to 1160 GeV (330 GeV) are excluded for $\tilde~{\chi}^{\pm}_1\tilde~{\chi}^0_2$/$\tilde~{\chi}^+_1\tilde~{\chi}^-_1$ production with subsequent decays via $\tau$-sleptons ($W$ and $h$ bosons). Masses of $\tau$-sleptons up to 500 GeV are excluded for mass degenerate $\tilde~{\tau}_{L,R}$ scenarios and up to 425 GeV for $\tilde~{\tau}_L$-only scenarios. Sensitivity to $\tilde~{\tau}_R$-only scenarios from the ATLAS experiment is presented here for the first time, with $\tilde~{\tau}_R$ masses excluded up to 350 GeV.
Presented is the search for anomalous Higgs boson decays into two axion-like particles (ALPs) using the full Run 2 data set of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment. The ALPs are assumed to decay into two photons, providing sensitivity to recently proposed models that could explain the $(g-2)_\mu$ discrepancy. This analysis covers an ALP mass range from 100 MeV to 62 GeV and ALP-photon couplings in the range $10^{-5}\, \text{TeV}^{-1}<C_{a\gamma\gamma}/\Lambda<1\, \text{TeV}^{-1}$, and therefore includes signatures with significantly displaced vertices and highly collinear photons. No significant excess of events above the Standard Model background is observed. Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to two ALPs in the four-photon final state, and are in the range of $ 10^{-5}$ to $3\times 10^{-2}$, depending on the hypothesized ALP mass and ALP-photon coupling strength.