Version 6
Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collision data with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 112001, 2018.
Inspire Record 1641270 DOI 10.17182/hepdata.77891

A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.

0 data tables match query

Search for squarks and gluinos in final states with jets and missing transverse momentum at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 392, 2016.
Inspire Record 1458270 DOI 10.17182/hepdata.74253

A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in $\sqrt{s}=$ 13 TeV proton--proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb$^{-1}$ of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.

0 data tables match query

Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 092012, 2018.
Inspire Record 1676551 DOI 10.17182/hepdata.83419

A search for electroweak production of supersymmetric particles is performed in two-lepton and three-lepton final states using recursive jigsaw reconstruction. The search uses data collected in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$ = 13 TeV proton--proton collisions at the CERN Large Hadron Collider corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Chargino-neutralino pair production, with decays via W/Z bosons, is studied in final states involving leptons and jets and missing transverse momentum for scenarios with large and intermediate mass-splittings between the parent particle and lightest supersymmetric particle, as well as for the scenario where this mass splitting is close to the mass of the Z boson. The latter case is challenging since the vector bosons are produced with kinematic properties that are similar to those in Standard Model processes. Results are found to be compatible with the Standard Model expectations in the signal regions targeting large and intermediate mass-splittings, and chargino-neutralino masses up to 600 GeV are excluded at 95% confidence level for a massless lightest supersymmetric particle. Excesses of data above the expected background are found in the signal regions targeting low mass-splittings, and the largest local excess amounts to 3.0 standard deviations.

0 data tables match query

Search for heavy, long-lived, charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s} = 13~\text{TeV}$ using the ATLAS experiment and the full Run 2 dataset

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 158, 2023.
Inspire Record 2080541 DOI 10.17182/hepdata.127994

This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

0 data tables match query

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

0 data tables match query

Version 2
Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2017) 084, 2017.
Inspire Record 1604276 DOI 10.17182/hepdata.77719

A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons ($e$ or $\mu$), or at least three isolated leptons, is presented. The analysis relies on the identification of $b$-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton--proton collisions at $\sqrt{s}= 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb$^{-1}$, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring $R$-parity conservation or $R$-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.

0 data tables match query

Version 2
Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 052012, 2018.
Inspire Record 1630632 DOI 10.17182/hepdata.78697

A search for long-lived, massive particles predicted by many theories beyond the Standard Model is presented. The search targets final states with large missing transverse momentum and at least one high-mass displaced vertex with five or more tracks, and uses 32.8 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC. The observed yield is consistent with the expected background. The results are used to extract 95\% CL exclusion limits on the production of long-lived gluinos with masses up to 2.37 TeV and lifetimes of $\mathcal{O}(10^{-2})$-$\mathcal{O}(10)$ ns in a simplified model inspired by Split Supersymmetry.

0 data tables match query

Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 092006, 2018.
Inspire Record 1654357 DOI 10.17182/hepdata.81626

A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.

0 data tables match query

Version 5
Search for long-lived charginos based on a disappearing-track signature in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 06 (2018) 022, 2018.
Inspire Record 1641262 DOI 10.17182/hepdata.78375

This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.

0 data tables match query

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at $\sqrt{s}$=8 TeV proton-proton collisions using the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 10 (2013) 130, 2013.
Inspire Record 1247060 DOI 10.17182/hepdata.61747

A search is presented for new particles decaying to large numbers (7 to greater or equal to 10) of jets, missing transverse momentum and no isolated electrons or muons. This analysis uses 20.3/fb of pp collision data at sqrt(s)=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The sensitivity of the search is enhanced by considering the number of b-tagged jets and the scalar sum of masses of large-radius jets in an event. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of various simplified supersymmetry-inspired models where gluinos are pair produced, as well as a mSUGRA/CMSSM model.

0 data tables match query