Date

Collaboration

Subject_areas

Search for R-parity violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using $\sqrt{s} = 13$ TeV proton-proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 1023, 2021.
Inspire Record 1869040 DOI 10.17182/hepdata.104860

A search for R-parity violating supersymmetry in final states characterised by high jet multiplicity, at least one isolated light lepton and either zero or at least three $b$-tagged jets is presented. The search uses 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based on observables at medium jet multiplicity, to predict the $b$-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence-level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.

0 data tables match query

Search for associated production of a $Z$ boson with an invisibly decaying Higgs boson or dark matter candidates at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 829 (2022) 137066, 2022.
Inspire Record 1969392 DOI 10.17182/hepdata.114363

A search for invisible decays of the Higgs boson as well as searches for dark matter candidates, produced together with a leptonically decaying $Z$ boson, are presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of 13 TeV, delivered by the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$ and recorded by the ATLAS experiment. Assuming Standard Model cross-sections for $ZH$ production, the observed (expected) upper limit on the branching ratio of the Higgs boson to invisible particles is found to be 19% (19%) at the 95% confidence level. Exclusion limits are also set for simplified dark matter models and two-Higgs-doublet models with an additional pseudoscalar mediator.

0 data tables match query

Search for invisible Higgs-boson decays in events with vector-boson fusion signatures using 139 $\text{fb}^{-1}$ of proton-proton data recorded by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 08 (2022) 104, 2022.
Inspire Record 2033393 DOI 10.17182/hepdata.127760

A direct search for Higgs bosons produced via vector-boson fusion and subsequently decaying into invisible particles is reported. The analysis uses 139 $\text{fb}^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$=13 $\text{TeV}$ recorded by the ATLAS detector at the LHC. The observed numbers of events are found to be in agreement with the background expectation from Standard Model processes. For a scalar Higgs boson with a mass of 125 $\text{GeV}$ and a Standard Model production cross section, an observed upper limit of $0.145$ is placed on the branching fraction of its decay into invisible particles at 95% confidence level, with an expected limit of $0.103$. These results are interpreted in the context of models where the Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross section of weakly interacting massive particles and nucleons. Invisible decays of additional scalar bosons with masses from 50 $\text{GeV}$ to 2 $\text{TeV}$ are also studied, and the derived upper limits on the cross section times branching fraction decrease with increasing mass from 1.0 $\text{pb}$ for a scalar boson mass of 50 $\text{GeV}$ to 0.1 $\text{pb}$ at a mass of 2 $\text{TeV}$.

0 data tables match query

Version 2
Search for heavy charged long-lived particles in the ATLAS detector in 31.6 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092007, 2019.
Inspire Record 1718558 DOI 10.17182/hepdata.86565

A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model-independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks ($R$-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived $R$-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop $R$-hadrons, as well as staus and charginos of 2000 GeV, 1250 GeV, 1340 GeV, 430 GeV and 1090 GeV, respectively.

0 data tables match query

Version 2
Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 737, 2020.
Inspire Record 1793461 DOI 10.17182/hepdata.93906

A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of ${\sqrt{s}=13}$ TeV proton-proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \to t^{(*)} \tilde{\chi}^0_1$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}^0_1$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}}> m_t+m_{\tilde{\chi}^0_1}$, top squark masses are excluded in the range 400-1250 GeV for $\tilde{\chi}^0_1$ masses below $200$ GeV at 95 % confidence level. In the situation where $m_{\tilde{t}}\sim m_t+m_{\tilde{\chi}^0_1}$, top squark masses in the range 300-630 GeV are excluded, while in the case where $m_{\tilde{t}}< m_W+m_b+m_{\tilde{\chi}^0_1}$ (with $m_{\tilde{t}}-m_{\tilde{\chi}^0_1}\ge 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300-660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below $1240$ GeV when considering only leptoquark decays into a top quark and a neutrino.

0 data tables match query

Search for pair production of gluinos decaying via stop and sbottom in events with $b$-jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 94 (2016) 032003, 2016.
Inspire Record 1466302 DOI 10.17182/hepdata.61814

A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.

0 data tables match query

Search for new phenomena in events with a photon and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 06 (2016) 059, 2016.
Inspire Record 1442359 DOI 10.17182/hepdata.72855

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton--proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 $\rm fb^{-1}$. The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses of up to 710 GeV for dark matter candidate masses up to 150 GeV. In an effective theory of dark matter production, values of the suppression scale $M_*$ up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding $M_{\rm D}$ up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20--40% depending on the number of additional spatial dimensions when applying a truncation procedure.

0 data tables match query

Search for the direct production of charginos and neutralinos in $\sqrt{s} = $ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 154, 2018.
Inspire Record 1620202 DOI 10.17182/hepdata.78377

A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of 36.1 fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the Standard Model background expectation is observed. Limits are derived in scenarios of $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ pair production and of $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the $\tilde{\tau}_{\mathrm L}$ state is set to be halfway between the masses of the $\tilde{\chi}_{1}^{\pm}$ and the $\tilde{\chi}_{1}^{0}$. Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ for a massless $\tilde{\chi}_{1}^{0}$. Common $\tilde{\chi}_{1}^{\pm}$, $\tilde{\chi}_{2}^{0}$ masses up to 760 GeV are excluded in the case of production of $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ assuming a massless $\tilde{\chi}_{1}^{0}$. Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the $\tilde{\chi}_{1}^{\pm}$ and the $\tilde{\chi}_{1}^{0}$ are also studied by varying the $\tilde{\tau}_{\mathrm L}$ mass between the masses of the $\tilde{\chi}_{1}^{\pm}$ and the $\tilde{\chi}_{1}^{0}$.

0 data tables match query

Version 2
Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 032006, 2020.
Inspire Record 1788448 DOI 10.17182/hepdata.91760

A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at $\sqrt{s} = 13$ TeV was collected with the ATLAS detector and corresponds to 136 fb$^{-1}$. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair-production of long-lived top squarks that decay via a small $R$-parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns.

0 data tables match query

Version 4
Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb$^{-1}$ of data collected with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2020) 046, 2020.
Inspire Record 1754675 DOI 10.17182/hepdata.91214

A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.

0 data tables match query