We observe evidence for the production of b-flavoured baryons in decays of the Z 0 boson with the OPAL detector at LEP. We find 68 Λl − , Λ l + candidates in 458 583 hadronic Z 0 decays. We interpret this as a signal of 55 ± 9 +0.3 −3.1 events from the semi-leptonic decays of b baryons. Assuming weakly decaying b baryons produced in Z 0 decays are mostly Λ b particles, we measure the product branching ratio (Γ b b /Γ had ) f ( b →Λ b ) B (Λ b →Λl − v X ) , averaged over the electron and muon channels, to be (6.2±1.0±1.5)×10 −4 .
FD is considered as a quark fragmentation fraction. Charge conjugated state is understood.
None
Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.
We have used the Fermilab 30-in. bubble-chamber-hybrid spectrometer to study neutral-strange-particle production in the interactions of 200-GeV/c protons and π+ and K+ mesons with nuclei of gold, silver, and magnesium. Average multiplicities and inclusive cross sections for K0 and Λ are measured, and a power law is found to give a good description of their A dependence. The exponent characterizing the A dependence is consistent with being the same for K0 and Λ production, and also the same for proton and π+ beams. Average K0 and Λ multiplicities, as well as their ratio, have been measured as functions of the numbers of projectile collisions νp and secondary collisions νs in the nucleus, and indicate that rescattering contributes significantly to enhancement of Λ production but not to K0 production. The properties of events with multiple K0's or Λ's also corroborate this conclusion. K0 rapidities are in the central region and decrease gently with increasing νp, while Λ rapidities are in the target-fragmentation region and are independent of νp. K0 and Λ multiplicities increase with the rapidity loss of the projectile, but their rapidities do not.
No description provided.
No description provided.
No description provided.
The cross sections for the reaction p¯+p→K++K−+π++π− were measured at six momenta from 400 to 670 MeV/c. Various effective mass distributions indicate that about 37% of the reaction involves K*0 or K¯*0, 16% proceeds via the intermediate state K*0+K¯*0, about 21% involves ρ, 5% proceeds via the ϕ+ρ state, and the rest follows phase space.
No description provided.
Fraction obtained from the effective mass distribution.
Fraction obtained from the effective mass distribution.
We report measurements of the ratios K+π+, pπ+, K−π−, p¯π−, π−π+, K−K+, and p¯p for hadrons with 0.19
No description provided.
No description provided.
No description provided.
The distribution of nuclei resulting from the annihilation of stopped antiprotons on238U has been studied by an off-line measurement of the residual radioactivity. It was found that the probability of fission exceeds 84% (68% c.l.). The charge and mass distributions of the fission products can be separated into two parts, a more frequent symmetric component originating from high energy fission (excitation energy between 100 MeV and 1 GeV) and an asymmetric component from low energy fission (excitation energy less than 40 MeV).
The measured yields per 1000 stopped PBAR.
Antiproton induced fission probabilities of U238, Bi209, Pb208 and Au177 are reported together with the mass distribution of the fission fragments in the U238 and Bi209 cases. The charged particles multiplicities observed in co-incidence with fission have, also, been measured for U and Bi and are presented.
TOTAL AVERAGE MASSES AND KINETIC ENERGIES OF FISSION FRAGMENTS. Mean mass is in proton mass units.
Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.
Experimental differential Thrust distributions.
Experimental differential Oblateness distributions.
Experimental differential C-parameter distributions.
An estimate of the temperature of protons andπ− mesons in central He−Li, He−C, C−C, C−Ne, C−Cu, C−Pb, O−Pb, Mg−Mg interactions is presented. The results indicate an increase of the proton temperature with increasing mass numbers of projectile and target nuclei (Ap,AT) fromTp=(118±3) MeV for He−Li toTp=(141±2) MeV for C−Pb. The temperature ofπ− mesons does not depend onAP,AT andTπ≃95 MeV. A satisfactory fit forπ− mesons in C−Cu, C−Pb, O−Pb, Mg−Mg collisions can be achieved by using a form involving two temperatures,T1 andT2. The relative yield of the high temperature component (T2) is ≅24% for C−Cu, C−Pb, and Mg−Mg interactions. The observed results forTP in C−Ne, C−Cu and C−Pb collisions are consistent with the prediction of the thermodynamic hagedorn model.
for C-CU and C-PB YRAP=0.3-1.7.
THE D(N)/D(PT) distribution has been fitted by the form: PT*ET*K1(SLOPE*ET), where K1 is Mac-Donaldis function. for C-CU and C-PB YRAP=0.3-1.7.
No description provided.
Measurements are reported of inclusive production of η-mesons in the beam fragmentation region in γp, πp andKp collisions. Results include a small but significant departure from VMD, and a pronounced rise in theη/π0 ratio with increasingpT.
No description provided.
No description provided.
No description provided.