Measurement of differential $b\bar{b}$- and $c\bar{c}$-dijet cross-sections in the forward region of $pp$ collisions at $\sqrt{s}=13 ~ \mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
JHEP 02 (2021) 023, 2021.
Inspire Record 1823739 DOI 10.17182/hepdata.110430

The inclusive $b \bar{b}$- and $c \bar{c}$-dijet production cross-sections in the forward region of $pp$ collisions are measured using a data sample collected with the LHCb detector at a centre-of-mass energy of 13 TeV in 2016. The data sample corresponds to an integrated luminosity of 1.6 fb$^{-1}$. Differential cross-sections are measured as a function of the transverse momentum and of the pseudorapidity of the leading jet, of the rapidity difference between the jets, and of the dijet invariant mass. A fiducial region for the measurement is defined by requiring that the two jets originating from the two $b$ or $c$ quarks are emitted with transverse momentum greater than 20 GeV$/c$, pseudorapidity in the range $2.2 < \eta < 4.2$, and with a difference in the azimuthal angle between the two jets greater than 1.5. The integrated $b \bar{b}$-dijet cross-section is measured to be $53.0 \pm 9.7$ nb, and the total $c \bar{c}$-dijet cross-section is measured to be $73 \pm 16$ nb. The ratio between $c \bar{c}$- and $b \bar{b}$-dijet cross-sections is also measured and found to be $1.37 \pm 0.27$. The results are in agreement with theoretical predictions at next-to-leading order.

17 data tables

The total $b \bar{b}$-dijet and $c \bar{c}$-dijet cross-sections and their ratio in the fiducial region, compared with the NLO predictions. The first uncertainty is the combined statistical and systematic uncertainty and the second is the uncertainty from the luminosity. For the predictions, the first uncertainty corresponds to the scale uncertainty, the second to the PDF uncertainty.

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of the leading jet $\eta$ (pseudorapidity).

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of $\Delta y^*$.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^\pm W^\mp$ or $ZZ$ in fully hadronic final states from $\sqrt{s}=13$ TeV $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 126 (2021) 121802, 2021.
Inspire Record 1822529 DOI 10.17182/hepdata.97191

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV=W^\pm W^\mp$ or $ZZ$ pairs from a decay of a dark Higgs boson $s$ is searched for using 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s\to V(q\bar q)V(q\bar q)$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted $VV$ pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.

13 data tables

Data overlaid on SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin with the maximum-likelihood estimators set to the conditional values of the CR-only fit, and propagated to SR and CRs. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.

Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with m<sub>Z'</sub> = 1 TeV and m<sub>s</sub> of (a) 160 GeV, (b) 235 GeV, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.

The ratios (&mu;) of the 95&#37; C.L. upper limits on the combined s&rarr; W<sup>&plusmn;</sup>W<sup>&#8723;</sup> and s&rarr; ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=0.5 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.

More…

Search for charged-lepton-flavour violation in $Z$-boson decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Nature Phys. 17 (2021) 819 819-825, 2021.
Inspire Record 1821688 DOI 10.17182/hepdata.96390

The ATLAS experiment at the Large Hadron Collider reports a search for charged-lepton-flavour violation in decays of $Z$ bosons into a τ lepton and an electron or muon of opposite charge.

9 data tables

The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

The best-fit expected and observed distributions of the combined NN output in the VRSS for the $e\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

More…

Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 313, 2021.
Inspire Record 1821703 DOI 10.17182/hepdata.96389

A search for pair production of scalar leptoquarks, each decaying into either an electron or a muon and a top quark, is presented. This is the first leptoquark search using ATLAS data to investigate top-philic cross-generational couplings that could provide explanations for recently observed anomalies in $B$ meson decays. This analysis targets high leptoquark masses which cause the decay products of each resultant top quark to be contained within a single high-$p_{\mathrm{T}}$ large-radius jet. The full Run 2 dataset is exploited, consisting of 139 fb$^{-1}$ of data collected from proton-proton collisions at $\sqrt{s}=13$ TeV from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. In the absence of any significant deviation from the background expectation, lower limits on the leptoquark masses are set at 1480 GeV and 1470 GeV for the electron and muon channel, respectively.

4 data tables

Expected and observed upper limits at the 95% CL on the leptoquark pair production cross section as a function of leptoquark mass under the assumption of $\mathcal{B}$(LQ->$te$)=1.

Expected and observed upper limits at the 95% CL on the leptoquark pair production cross section as a function of leptoquark mass under the assumption of $\mathcal{B}$(LQ->$t\mu$)=1.

Expected and observed 95% CL lower limits on the leptoquark mass as a function of the branching ratio $\mathcal{B}$(LQ->$te$).

More…

Search for phenomena beyond the Standard Model in events with large $b$-jet multiplicity using the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 11, 2021.
Inspire Record 1821239 DOI 10.17182/hepdata.95683

A search is presented for new phenomena in events characterised by high jet multiplicity, no leptons (electrons or muons), and four or more jets originating from the fragmentation of $b$-quarks ($b$-jets). The search uses 139 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider during Run 2. The dominant Standard Model background originates from multijet production and is estimated using a data-driven technique based on an extrapolation from events with low $b$-jet multiplicity to the high $b$-jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits that constrain simplified models of R-parity-violating supersymmetry are determined. The exclusion limits reach 950 GeV in top-squark mass in the models considered.

49 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stbchionly_obs">Stop to bottom quark and chargino exclusion contour (Obs.)</a> <li><a href="?table=stbchionly_exp">Stop to bottom quark and chargino exclusion contour (Exp.)</a> <li><a href="?table=stbchi_obs">Stop to higgsino LSP exclusion contour (Obs.)</a> <li><a href="?table=stbchi_exp">Stop to higgsino LSP exclusion contour (Exp.)</a> <li><a href="?table=sttN_obs">Stop to top quark and neutralino exclusion contour (Obs.)</a> <li><a href="?table=sttN_exp">Stop to top quark and neutralino exclusion contour (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stbchionly_xSecUL_obs">Obs Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_obs">Obs Xsection upper limit in higgsino LSP</a> <li><a href="?table=stbchionly_xSecUL_exp">Exp Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_exp">Exp Xsection upper limit in higgsino LSP</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_yields">SR_yields</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow">cutflow</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>stbchi_6je4be:</b> <a href="?table=stbchi_Acc_6je4be">stbchi_Acc_6je4be</a> <a href="?table=stbchi_Eff_6je4be">stbchi_Eff_6je4be</a> <li> <b>stbchi_7je4be:</b> <a href="?table=stbchi_Acc_7je4be">stbchi_Acc_7je4be</a> <a href="?table=stbchi_Eff_7je4be">stbchi_Eff_7je4be</a> <li> <b>stbchi_8je4be:</b> <a href="?table=stbchi_Acc_8je4be">stbchi_Acc_8je4be</a> <a href="?table=stbchi_Eff_8je4be">stbchi_Eff_8je4be</a> <li> <b>stbchi_9ji4be:</b> <a href="?table=stbchi_Acc_9ji4be">stbchi_Acc_9ji4be</a> <a href="?table=stbchi_Eff_9ji4be">stbchi_Eff_9ji4be</a> <li> <b>stbchi_6je5bi:</b> <a href="?table=stbchi_Acc_6je5bi">stbchi_Acc_6je5bi</a> <a href="?table=stbchi_Eff_6je5bi">stbchi_Eff_6je5bi</a> <li> <b>stbchi_7je5bi:</b> <a href="?table=stbchi_Acc_7je5bi">stbchi_Acc_7je5bi</a> <a href="?table=stbchi_Eff_7je5bi">stbchi_Eff_7je5bi</a> <li> <b>stbchi_8je5bi:</b> <a href="?table=stbchi_Acc_8je5bi">stbchi_Acc_8je5bi</a> <a href="?table=stbchi_Eff_8je5bi">stbchi_Eff_8je5bi</a> <li> <b>stbchi_9ji5bi:</b> <a href="?table=stbchi_Acc_9ji5bi">stbchi_Acc_9ji5bi</a> <a href="?table=stbchi_Eff_9ji5bi">stbchi_Eff_9ji5bi</a> <li> <b>stbchi_8ji5bi:</b> <a href="?table=stbchi_Acc_8ji5bi">stbchi_Acc_8ji5bi</a> <a href="?table=stbchi_Eff_8ji5bi">stbchi_Eff_8ji5bi</a> <li> <b>sttN_6je4be:</b> <a href="?table=sttN_Acc_6je4be">sttN_Acc_6je4be</a> <a href="?table=sttN_Eff_6je4be">sttN_Eff_6je4be</a> <li> <b>sttN_7je4be:</b> <a href="?table=sttN_Acc_7je4be">sttN_Acc_7je4be</a> <a href="?table=sttN_Eff_7je4be">sttN_Eff_7je4be</a> <li> <b>sttN_8je4be:</b> <a href="?table=sttN_Acc_8je4be">sttN_Acc_8je4be</a> <a href="?table=sttN_Eff_8je4be">sttN_Eff_8je4be</a> <li> <b>sttN_9ji4be:</b> <a href="?table=sttN_Acc_9ji4be">sttN_Acc_9ji4be</a> <a href="?table=sttN_Eff_9ji4be">sttN_Eff_9ji4be</a> <li> <b>sttN_6je5bi:</b> <a href="?table=sttN_Acc_6je5bi">sttN_Acc_6je5bi</a> <a href="?table=sttN_Eff_6je5bi">sttN_Eff_6je5bi</a> <li> <b>sttN_7je5bi:</b> <a href="?table=sttN_Acc_7je5bi">sttN_Acc_7je5bi</a> <a href="?table=sttN_Eff_7je5bi">sttN_Eff_7je5bi</a> <li> <b>sttN_8je5bi:</b> <a href="?table=sttN_Acc_8je5bi">sttN_Acc_8je5bi</a> <a href="?table=sttN_Eff_8je5bi">sttN_Eff_8je5bi</a> <li> <b>sttN_9ji5bi:</b> <a href="?table=sttN_Acc_9ji5bi">sttN_Acc_9ji5bi</a> <a href="?table=sttN_Eff_9ji5bi">sttN_Eff_9ji5bi</a> <li> <b>sttN_8ji5bi:</b> <a href="?table=sttN_Acc_8ji5bi">sttN_Acc_8ji5bi</a> <a href="?table=sttN_Eff_8ji5bi">sttN_Eff_8ji5bi</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.

The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.

More…

Search for heavy resonances decaying into a pair of $Z$ bosons in the $\ell^+\ell^-\ell'^+\ell'^-$ and $\ell^+\ell^-\nu\bar\nu$ final states using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Eur.Phys.J.C 81 (2021) 332, 2021.
Inspire Record 1820316 DOI 10.17182/hepdata.97159

A search for heavy resonances decaying into a pair of $Z$ bosons leading to $\ell^+\ell^-\ell'^+\ell'^-$ and $\ell^+\ell^-\nu\bar\nu$ final states, where $\ell$ stands for either an electron or a muon, is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected from 2015 to 2018 that corresponds to the full integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Different mass ranges spanning 200 GeV to 2000 GeV for the hypothetical resonances are considered, depending on the final state and model. In the absence of a significant observed excess, the results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, and the limits for the spin-2 resonance are used to constrain the Randall--Sundrum model with an extra dimension giving rise to spin-2 graviton excitations.

16 data tables

Distribution of the four-lepton invariant mass in the four-lepton final state for the ggF-MVA-high 4-muon category.

Distribution of the four-lepton invariant mass in the four-lepton final state for the ggF-MVA-high 2e2mu category.

Distribution of the four-lepton invariant mass in the four-lepton final state for the ggF-MVA-high 4-electron category.

More…

Observation and measurement of forward proton scattering in association with lepton pairs produced via the photon fusion mechanism at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 261801, 2020.
Inspire Record 1820312 DOI 10.17182/hepdata.116547

The observation of forward proton scattering in association with lepton pairs ($e^+e^-+p$ or $\mu^+\mu^-+p$) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of $\sqrt{s} = 13$ TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 57 (123) candidates in the $ee+p$ ($\mu\mu+p$) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding five standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to $\sigma_{ee+p}$ = 11.0 $\pm$ 2.6 (stat.) $\pm$ 1.2 (syst.) $\pm$ 0.3 (lumi.) fb and $\sigma_{\mu\mu+p}$ = 7.2 $\pm$ 1.6 (stat.) $\pm$ 0.9 (syst.) $\pm$ 0.2 (lumi.) fb in the dielectron and dimuon channel, respectively.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Search for strong electric fields in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV using azimuthal anisotropy of prompt $\mathrm{D}^0$ and $\overline{\mathrm{D}}^0$ mesons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 816 (2021) 136253, 2021.
Inspire Record 1819820 DOI 10.17182/hepdata.93879

The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapidity-dependent difference ($\Delta v_2$) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, $v_2$) between $\mathrm{D}^0$ ($\mathrm{\bar{u}c}$) and $\overline{\mathrm{D}}^0$ ($\mathrm{u\bar{c}}$) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of $\Delta v_2$. The rapidity-averaged value is found to be $\langle\Delta v_2 \rangle =$ 0.001 $\pm$ 0.001 (stat) $\pm$ 0.003 (syst) in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the $\mathrm{D}^0$ and $\overline{\mathrm{D}}^0$ mesons $v_2$ and triangular flow coefficient ($v_3$) as functions of rapidity, transverse momentum ($p_\mathrm{T}$), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt $\mathrm{D}^0$ meson $v_2$ values is observed, while the $v_3$ is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry.

19 data tables

Prompt $D^0$ meson $v_2$ as a function of $p_T$ in PbPb collisions at $\sqrt{s_{NN}}=5.02~TeV$.

Prompt $D^0$ meson $v_2$ as a function of $p_T$ in PbPb collisions at $\sqrt{s_{NN}}=5.02~TeV$.

Prompt $D^0$ meson $v_2$ as a function of $p_T$ in PbPb collisions at $\sqrt{s_{NN}}=5.02~TeV$.

More…

Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 812 (2021) 136018, 2021.
Inspire Record 1818160 DOI 10.17182/hepdata.96027

The first measurements of production cross sections of polarized same-sign W$^\pm$W$^\pm$ boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W$^\pm$W$^\pm$ scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88) fb is set on the production cross section for longitudinally polarized same-sign W$^\pm$W$^\pm$ boson pairs. The electroweak production of same-sign W$^\pm$W$^\pm$ boson pairs with at least one of the W bosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.

4 data tables

Systematic uncertainties of the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$, and $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ cross section measurements in units of percent.

Expected yields from various SM processes and observed data events in WW SR. The combination of the statistical and systematic uncertainties is shown. The expected yields are shown with their best fit normalizations from the simultaneous fit for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ cross sections. The $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{T}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ yields are obtained from the $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ yield assuming the SM prediction for the ratio of the yields. The tVx background yield includes the contributions from tt$\mathrm{V}$ and tZq processes.

Measured fiducial cross sections for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ processes, and for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ processes for the helicity eigenstates defined in the WW center-of-mass frame. The combination of the statistical and systematic uncertainties is shown. $\mathcal{B}$ is the branching fraction for $\mathrm{W}\mathrm{W} \rightarrow \ell \nu \ell' \nu$. The fiducial region is defined by requiring two same-sign leptons with $p_{T}>20$, $|\eta|<2.5$, and $m_{ll}>20$, and two jets with $m_{jj}>500$ and $|\Delta \eta_{jj}|>2.5$. The jets at generator level are clustered from stable particles, excluding neutrinos, using the anti-kt clustering algorithm with R = 0.4, and are required to have $p_{T}>50$ and $|\eta|<4.7$. The jets within $\Delta R<0.4$ of the selected charged leptons are not included. The theoretical predictions including the $\mathcal{O}(\alpha_{s}\alpha^6)$ and $\mathcal{O}(\alpha^7)$ corrections to the \MGvATNLO LO cross sections, as described in arXiv:2009.09429, are also shown. The theoretical uncertainties include statistical, PDF, and LO scale uncertainties.

More…

Pseudorapidity distributions of charged particles as a function of mid and forward rapidity mutiplicities in pp collisions at $\sqrt{s}$ = 5.02, 7 and 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 630, 2021.
Inspire Record 1818157 DOI 10.17182/hepdata.106205

The multiplicity dependence of the pseudorapidity density of charged particles in proton-proton (pp) collisions at centre-of-mass energies $\sqrt{s}$ = 5.02, 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ($|\eta| < 1.5$). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $|\eta|<1$ ($\mathrm{INEL}_{>0}$). The multiplicity dependence of the pseudorapidy density of charged particles is measured with mid and forward rapidity multiplicity estimators, the latter being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. Both generators provide a good description of the data.

6 data tables

Charged-particle pseudorapidity density for forward multiplicity classes as a function of $\eta$ in pp collisions at $\sqrt{s} = 5.02\,\mathrm{TeV}$. Statistical errors are generally insignificant.

Charged-particle pseudorapidity density for forward multiplicity classes as a function of $\eta$ in pp collisions at $\sqrt{s} = 7\,\mathrm{TeV}$. Statistical errors are generally insignificant.

Charged-particle pseudorapidity density for forward multiplicity classes as a function of $\eta$ in pp collisions at $\sqrt{s} = 13\,\mathrm{TeV}$. Statistical errors are generally insignificant.

More…