The $pp \to W^{\pm} (\to μ^{\pm} ν_μ) X$ cross-sections are measured at a proton-proton centre-of-mass energy $\sqrt{s} = 5.02$ TeV using a dataset corresponding to an integrated luminosity of 100 pb$^{-1}$ recorded by the LHCb experiment. Considering muons in the pseudorapidity range $2.2 < η< 4.4$, the cross-sections are measured differentially in twelve intervals of muon transverse momentum between $28 < p_\mathrm{T} < 52$ GeV. Integrated over $p_\mathrm{T}$, the measured cross-sections are \begin{align*} σ_{W^+ \to μ^+ ν_μ} &= 300.9 \pm 2.4 \pm 3.8 \pm 6.0~\text{pb}, \\ σ_{W^- \to μ^- \barν_μ} &= 236.9 \pm 2.1 \pm 2.7 \pm 4.7~\text{pb}, \end{align*} where the first uncertainties are statistical, the second are systematic, and the third are associated with the luminosity calibration. These integrated results are consistent with theoretical predictions. This analysis introduces a new method to determine the $W$-boson mass using the measured differential cross-sections corrected for detector effects. The measurement is performed on this statistically limited dataset as a proof of principle and yields \begin{align*} m_W = 80369 \pm 130 \pm 33~\text{MeV}, \end{align*} where the first uncertainty is experimental and the second is theoretical.
The measured differential cross sections ($d\sigma/dp_T$) for $W^+$. The first systematic uncertainty is statistical and the second is systematic.
The measured differential cross sections ($d\sigma/dp_T$) for $W^-$. The first systematic uncertainty is statistical and the second is systematic.
The correlation matrix corresponding to the statistical uncertainties on the differential cross-section ($d\sigma/dp_T$) fit results for $W^+$. To combine with $W^-$, use the rows and columns ordered as $W^+$ and then $W^-$. Assume no correlation in the statistical uncertainties between $W^+$ and $W^-$ (zero entries in the off-diagonal blocks).
This Letter reports the first measurement of photonuclear D$^0$ meson production in ultraperipheral heavy ion collisions. The study is performed using lead-lead collision data, with an integrated luminosity of 1.38 nb$^{-1}$, collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.36 TeV. Photonuclear events, where one of the colliding nuclei breaks up and the other remains intact, are selected based on breakup neutron emissions and by requiring no particle activity in a large rapidity interval in the direction of the photon-emitting nucleus. The D$^0$ mesons are reconstructed via the D$^0$$\to$ K$^-$$π^+$ decay channel, with the cross section measured as a function of D$^0$ meson transverse momentum and rapidity. The results are compared with next-to-leading-order perturbative QCD calculations that employ recent parametrizations of the lead nuclear parton distribution functions, as well as with predictions based on the color glass condensate framework. This measurement is the first photonuclear collision study characterizing parton distribution functions of lead nuclei for parton fractional momenta $x$ (relative to the nucleon) ranging approximately from a few 10$^{-4}$ to 10$^{-2}$ for different hard energy scale $Q^2$ selections.
The mass distribution of D$^{0}$ decaying to K$^{-}$ and $\pi^{+}$ for $5 < p_{\mathrm{T}} < 8$ GeV and $0.0 < y < 1.0$ in 0nXn ultraperipheral PbPb collisions.
The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $2 < p_{\mathrm{T}} < 5$ GeV in ultraperipheral PbPb collisions.
The d$^{2}\sigma$/dydp$_{\mathrm{T}}$ production cross section of D$^{0}$ for $5 < p_{\mathrm{T}} < 8$ GeV in ultraperipheral PbPb collisions.
A measurement of the angular structure of jets containing a prompt D$^0$ meson and of inclusive jets in proton-proton collisions at the LHC at a center-of-mass energy of 5.02 TeV is presented. The data corresponding to an integrated luminosity of 301 pb$^{-1}$ were collected by the CMS experiment in 2017. Two jet grooming algorithms, late-$k_\mathrm{T}$ and soft drop, are used to study the intrajet radiation pattern using iterative Cambridge$-$Aachen declustering. The splitting-angle distributions of jets with transverse momentum ($p_\mathrm{T}$) of around 100 GeV, obtained with these two algorithms, show that there is a shift of the distribution for jets containing a prompt D$^0$ meson with respect to inclusive jets. The shift observed in the late-$k_\mathrm{T}$ grooming approach is consistent with the dead-cone effect, whereas the shift for splittings selected with the soft-drop algorithm appears to be dominated by gluon splitting to charm quark-antiquark pairs. The measured distributions are corrected to the particle level and can be used to constrain model predictions for the substructure of high-$p_\mathrm{T}$ charm quark jets.
The unfolded late-$k_{T}$ angular distribution for prompt $D^{0}$ jets.
The unfolded late-$k_{T}$ angular distribution for inclusive jets.
The unfolded SD angular distribution for prompt $D^{0}$ jets.
The first measurement of pseudorapidity and azimuthal angle distributions relative to the momentum vector of a Z boson for low transverse momentum ($p_\mathrm{T}$) charged hadrons in lead-lead (PbPb) collisions is presented. By studying the hadrons produced in an event with a high-$p_\mathrm{T}$ Z boson (40 $\lt$$p_\mathrm{T}$$\lt$ 350 GeV), the analysis probes how the quark-gluon plasma (QGP) medium created in these collisions affects the parton recoiling opposite to the Z boson. Utilizing PbPb data at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}$ = 5.02 TeV from 2018 with an integrated luminosity of 1.67 nb$^{-1}$ and proton-proton (pp) data at the same energy from 2017 with 301 pb$^{-1}$, the distributions are examined in bins of charged-hadron $p_\mathrm{T}$. A significant modification of the distributions for charged hadrons in the range 1$\lt$$p_\mathrm{T}$$\lt$ 2 GeV in PbPb collisions is observed when compared to reference measurements from pp collisions. The data provide new information about the correlation between hard and soft particles in heavy ion collisions, which can be used to test predictions of various jet quenching models. The results are consistent with expectations of a hydrodynamic wake created when the QGP is depleted of energy by the parton propagating through it. Based on comparisons of PbPb data with pp references and predictions from theoretical models, this Letter presents the first evidence of medium-recoil and medium-hole effects caused by a hard probe.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.
The first observation of coherent $\phi$(1020) meson photoproduction off heavy nuclei is presented using ultraperipheral lead-lead collisions at a center-of-mass energy per nucleon pair of 5.36 TeV. The data were collected by the CMS experiment and correspond to an integrated luminosity of 1.68 $\mu$b$^{-1}$. The $\phi$(1020) meson signals are reconstructed via the K$^+$K$^-$ decay channel. The production cross section is presented as a function of the $\phi$(1020) meson rapidity in the range 0.3 $\lt$$\lvert y\rvert$$\lt$ 1.0, probing gluons that carry a fraction of the nucleon momentum ($x$) around $10^{-4}$. The observed cross section exhibits little dependence on rapidity and is significantly suppressed, by a factor of ${\sim}$5, compared to a baseline model that treats a nucleus as a collection of free nucleons. Theoretical models that incorporate either nuclear shadowing or gluon saturation predict suppression of the $\phi$(1020) meson cross section with only a small dependence on rapidity, but the magnitude of the predicted suppression varies greatly. Models considering only nuclear shadowing effects result in the best agreement with the experimental data. This study establishes a powerful new tool for exploring nuclear effects and nuclear gluonic structure in the small-$x$ regime at a unique energy scale bridging the perturbative and nonperturbative quantum chromodynamics domains.
The differential coherent $\phi$ photoproduction cross section and the nuclear suppression factor as a function of rapidity.
The first measurement of prompt D$^{*+}$-meson spin alignment in ultrarelativistic heavy-ion collisions with respect to the direction orthogonal to the reaction plane is presented. The spin alignment is quantified by measuring the element $\rho_{00}$ of the diagonal spin-density matrix for prompt D$^{*+}$ mesons with $4<p_{\rm T}<30$ GeV/$c$ in two rapidity intervals, $|y|<0.3$ and $0.3<|y|<0.8$, in central (0-10%) and midcentral (30-50%) Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Evidence of spin alignment $\rho_{00}>1/3$ has been found for $p_{\rm T}>15$ GeV/$c$ and $0.3<|y|<0.8$ with a significance of $3.1\sigma$. The measured spin alignment of prompt D$^{*+}$ mesons is compared with the one of inclusive J/$\psi$ mesons measured at forward rapidity ($2.5 < y < 4$).
$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.
$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.3 < |y| < 0.8$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.
$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for central (0--10\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.
Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.
Data from Figure 2, panel a, $v_{0}$
Data from Figure 2, panel c, upper panel, Normalized Covariance $\times 10^{3}$ in 0-5% Centrality
Data from Figure 2, panel c, lower panel, Normalized Covariance $\times 10^{3}$ in 50-60% Centrality
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb$^{-1}$. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $120 < p_{\mathrm{T,jet}} < 140$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $120 < p_{\mathrm{T,jet}} < 140$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $140 < p_{\mathrm{T,jet}} < 160$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
Correlations among conserved quantum numbers, such as the net-electric charge, the net-baryon, and the net-strangeness in heavy-ion collisions, are crucial for exploring the QCD phase diagram. In this letter, these correlations are investigated using net-proton number (as a proxy for the net-baryon), net-kaon number (for the net-strangeness), and net-charged particle number in Pb-Pb collisions at $\sqrt{s_\text{NN}}=5.02$ TeV with the ALICE detector. The observed correlations deviate from the Poissonian baseline, with a more pronounced deviation at LHC energies than at RHIC. Theoretical calculations of the Thermal-FIST hadron resonance gas model, HIJING, and EPOS LHC event generators are compared with experimental results, where a significant impact of resonance decays is observed. Thermal-FIST calculations under the grand canonical and canonical ensembles highlight significant differences, underscoring the role of local charge conservation in explaining the data. Recent lattice QCD studies have demonstrated that the magnetic field generated by spectator protons in heavy-ion collisions affects susceptibility ratios, in particular those related to the net-electric charge and the net-baryon numbers. The experimental findings are in qualitative agreement with the expectations of lattice QCD.
$\kappa^{2}_{\pi}$ as a function of centrality (%) in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for Set 1 $p_\mathrm{T}$ acceptance.
$\kappa^{2}_{\pi}$ as a function of centrality (%) in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for Set 2 $p_\mathrm{T}$ acceptance.
$\kappa^{2}_\mathrm{K}$ as a function of centrality (%) in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for Set 1 $p_\mathrm{T}$ acceptance.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.