Showing 9 of 929 results
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($\tau_{\tilde{\chi}_{1}^{\pm}}$ = 0.2 ns and $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV) in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in electroweak channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of signal ($m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}} = 500 GeV$) in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of total background in strong channel in the high-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of observed data in strong channel in the high-Emiss region.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Observed exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 1.0 ns.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Model dependent upper limits on cross-section (pb) for the electroweak production are shown by grey numbers in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Total acceptance $\times$ efficiency of the electroweak channel. The total signal acceptance $\times$ efficiency is defined as the probability of an event passing the signal region selection when an electroweak gaugino pair is produced in a pp collision.
Total acceptance $\times$ efficiency of the strong channel. In white regions, no simulation sample is available. The left-upper triangle region is not allowed kinematically in wino-LSP scenarios. The total signal acceptance $\times$ efficiency is calculated relative to events in which the gluinos decay into electroweak gaugino pairs.
The generator-level acceptance for charginos produced in the electroweak channel as a function of the chargino $eta$ and chargino decay radius (at generator level).
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the electroweak channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
The generator-level acceptance for charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level).
The acceptance $\times$ efficiency after reconstruction, for selecting and reconstructing charginos produced in the strong channel as a function of the chargino $\eta$ and chargino decay radius (at generator level). The acceptance $\times$ efficiency after reconstruction is the probability of a signal event, which passes all the event-level requirements, passing all the track/tracklet requirements after reconstruction.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in direct electroweak production with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
Summary of the selection criteria, and the corresponding observed number of events in data as well as the expected number of signal events in simulation for two benchmark models: a chargino produced in the strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. The expected number of signal events is normalised to 36.1 fb${}^{-1}$. The signal selection efficiencies are also shown in parentheses. The first row shows the number of events after the application of detector and data quality conditions. Requirements below the dashed line are applied to tracks and tracklets.
The event and tracklet generator-level acceptance and selection efficiency for a few electroweak signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
The event and tracklet generator-level acceptance and selection efficiency for a few strong signal models studied in this search. The last column shows the probability ($P$) for a reconstructed tracklet to have $p_{T}$ greater than 100 GeV.
Systematic uncertainties in the signal event yields at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.
Observed events, expected background for null signal, and expected signal yields for two benchmark models: electroweak channel with ($m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (400 GeV, 0.2 ns) and strong channel with ($m_{\tilde{g}}$, $m_{\tilde{\chi}_{1}^{\pm}}$, $\tau_{\tilde{\chi}_{1}^{\pm}}$) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss region. Also shown are the probability of a background-only experiment being more signal-like than observed ($p_0$) and the upper limit on the model-independent visible cross-section at 95\% CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to anti-correlation between different backgrounds.
Effects of systematic uncertainties on the signal exclusion significance at $m_{\tilde{\chi}_{1}^{\pm}}$ = 400 GeV for the electroweak channel and at $m_{\tilde{g}}$ = 1600 GeV, $m_{\tilde{\chi}_{1}^{\pm}}$ = 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the estimated number of the fake-tracklet background events is small.
Cross-section upper limits for the strong production, presented in unit of fb. Left-upper triangle region is unphysical because the wino mass is larger than the gluino mass.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-2400. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1200. For signal, a squark direct decay model where squarks have mass of 900 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2400. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-3600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-1600. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR3j-1300. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1400. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1800. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2600. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-3000. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1700. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2000. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1800. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
The results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb$^{-1}$ of integrated luminosity from proton--proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark $\tilde{t}$ and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay $\tilde{t} \rightarrow b \tilde{\chi}_{1}^{\pm}$ into a $b$-quark and the lightest chargino with $\tilde{\chi}_{1}^{\pm} \rightarrow W \tilde{\chi}_{1}^{0}$, the decay $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ into an on-shell top quark and the lightest neutralino, the three-body decay $\tilde{t} \rightarrow b W \tilde{\chi}_{1}^{0}$ and the four-body decay $\tilde{t} \rightarrow b \ell \nu \tilde{\chi}_{1}^{0}$. No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the $\tilde{t}$ and $\tilde{\chi}_{1}^{0}$ masses. The results exclude at 95% confidence level $\tilde{t}$ masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches.
Two-body selection background fit results for the CRs of the SRA$^{2-body}_{180}$ and SRB$^{2-body}_{140}$ background fits. The nominal expectations from MC simulation are given for comparison for those backgrounds (top, $VV$-SF, ttZ and $VZ$) that are normalised to data in dedicated CRs. The `Others category contains the contributions from $ttW$, $tth$, $ttWW$, $ttt$, $tttt$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Entries marked ``--'' indicate a negligible background contribution. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.
Two-body selection background fit results for the CRs of the SRC$^{2-body}_{110}$ background fit. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $t\bar t Z$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t t$, $t\bar t t\bar t$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Entries marked $--$ indicate a negligible background contribution. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.
Two-body selection distribution of $n_{jets}$ in CR$^{2-body}_{top}$ after the background fits. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Two-body selection distribution of $R_{2\ell 2j}$ in $CR^{2-body}_{VV-SF}$ after the background fits. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Two-body selection distribution of $E_{T,corr}^{miss}$ in $CR_{ttZ}$ after the background fits. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Two-body selection distribution of $E_{T,corr}^{miss}$ in $CR_{VZ}$ after the background fits. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Three-body selection background fit results for the CRs of the SR$^{3-body}_{W}$ and SR$^{3-body}_{t}$ background fit. The nominal expectations from MC simulation are given for comparison for those backgrounds (ttbar, $VV$-DF and $VV$-SF) that are normalised to data in dedicated CRs.Combined statistical and systematic uncertainties are given. Entries marked ``--'' indicate a negligible background contribution. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.
Three-body selection distributions of $R_{p_{T}}$ in $CR^{3-body}_{t\bar{t}}$ after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Three-body selection distributions of $cos\theta_{b}$ in $CR^{3-body}_{VV-DF}$ after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Three-body selection distributions of $M_{\Delta}^{R}$ in $CR^{3-body}_{VV-SF}$ after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Four-body selection background fit results for the CRs of the SR$^{4-body}$ background fit. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $VV$ and $Z_{\tau\tau}$) that are normalised to data in dedicated CRs. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.
Four-body selection distributions of the $p_{T}(j_1)$ in CR$^{4-body}_{t\bar{t}}$ after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Four-body selection distributions of the $R_{2\ell}$ in CR$^{4-body}_{VV}$ after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Four-body selection distributions of the $E^{miss}_{T}$ in CR$^{4-body}_{Z\tau\tau}$ after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.
Two-body selection background fit results for SRA$^{2-body}_{180}$ and SRB$^{2-body}_{140}$. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $t\bar t Z$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t t$, $t\bar t t\bar t$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Entries marked $--$ indicate a negligible background contribution. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.
Two-body selection background fit results for SRC$^{2-body}_{110}$. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $t\bar t Z$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t t$, $t\bar t t\bar t$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Entries marked $--$ indicate a negligible background contribution. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.
Two-body selection distributions of $m_{T2}^{ll}$ for events satisfying the selection criteria of the six SRs, except for the one on $m_{T2}^{ll}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Two-body selection distributions of $m_{T2}^{ll}$ for events satisfying the selection criteria of the six SRs, except for the one on $m_{T2}^{ll}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Two-body selection distributions of $m_{T2}^{ll}$ for events satisfying the selection criteria of the six SRs, except for the one on $m_{T2}^{ll}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Two-body selection distributions of $m_{T2}^{ll}$ for events satisfying the selection criteria of the six SRs, except for the one on $m_{T2}^{ll}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Two-body selection distributions of $m_{T2}^{ll}$ for events satisfying the selection criteria of the six SRs, except for the one on $m_{T2}^{ll}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Two-body selection distributions of $m_{T2}^{ll}$ for events satisfying the selection criteria of the six SRs, except for the one on $m_{T2}^{ll}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Two-body selection background fit results for SR(A,B)$^{2-body}_{x,y}$ regions, where x and y denote the low and high edges of the bin. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric.
Three-body selection background fit results for SR$^{3-body}_{W}$ and SR$^{3-body}_{t}$. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric.
Three-body selection distributions of $R_{p_{T}}$ in same-flavour events that satisfy all the SR$^{3-body}_{W}$ selection criteria except for the one on $R_{p_{T}}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Three-body selection distributions of $R_{p_{T}}$ in different-flavour events that satisfy all the SR$^{3-body}_{W}$ selection criteria except for the one on $R_{p_{T}}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Three-body selection distributions of $M_{\Delta}^{R}$ in same-flavour events that satisfy all the SR$^{3-body}_{t}$ selection criteria except for the one on $M_{\Delta}^{R}$, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Three-body selection distributions of $M_{\Delta}^{R}$ in different-flavour events that satisfy all the SR$^{3-body}_{t}$ selection criteria except for the one on $M_{\Delta}^{R}$ after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Four-body selection distributions of $R_{2\ell 4j}$ for events satisfying all the SR$^{4-body}$ selections but for the one on the variable shown in the figure, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Four-body selection distributions of $R_{2\ell}$ for events satisfying all the SR$^{4-body}$ selections but for the one on the variable shown in the figure, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows indicate the signal region selection criteria.
Four-body selection background fit results for SR$^{4-body}$. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t \bar t$, $VV$ and $Z_{\tau\tau}$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t $, $t\bar t t\bar t$ , $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.
Model-independent 95% CL upper limits on the visible cross-section ($\sigma_{vis}$) of new physics, the visible number of signal events ($S^{95}_{\rm obs}$), the visible number of signal events ($S^{95}_{\rm exp}$) given the expected number of background events (and $\pm1\sigma$ excursions on the expectation), and the discovery $p$-value ($p(s = 0)$), all calculated with pseudo-experiments, are shown for each SR.
Observed exclusion limits at 95% CL for a simplified model assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
Expected exclusion limits at 95% CL for a simplified model assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
Expected exclusion limits at 95% CL from the analysis of $36.1 \; \text{fb}^{-1}$ of 13 TeV $pp$ collision data as a function of the mass of the $\tilde{t}_1$ for a fixed $(\tilde{\chi}^0_1) = 0$ GeV, assuming $\text{BR}(\tilde{\chi}^0_2 \to Z\tilde{\chi}^0_1) = 0.5$ and $\text{BR}(\tilde{\chi}^0_2 \to h\tilde{\chi}^0_1) = 0.5$.
Observed exclusion limits at 95% CL from the analysis of $36.1 \; \text{fb}^{-1}$ of 13 TeV $pp$ collision data as a function of the mass of the $\tilde{t}_1$ for a fixed $(\tilde{\chi}^0_1) = 0$ GeV, assuming $\text{BR}(\tilde{\chi}^0_2 \to Z\tilde{\chi}^0_1) = 0.5$ and $\text{BR}(\tilde{\chi}^0_2 \to h\tilde{\chi}^0_1) = 0.5$.
Expected exclusion contour as a function of $m_{\tilde{t}_1}$ and $m_{\tilde{\chi}^0_1}$ in the pMSSM model described in the text. Pair production of $\tilde{t}_1$ and $\tilde{b}_1$ are considered. Limits are set for both the positive (red in the figure) and negative (blue in the figure) values of $\mu$. The dashed and dotted grey lines indicate constant values of the $\tilde{b}_1$ mass. The signal models included within the shown contours are excluded at 95% CL. The dashed lines and the shaded band are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid line is the observed limit for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section.
Observed exclusion contour as a function of $m_{\tilde{t}_1}$ and $m_{\tilde{\chi}^0_1}$ in the pMSSM model described in the text. Pair production of $\tilde{t}_1$ and $\tilde{b}_1$ are considered. Limits are set for both the positive (red in the figure) and negative (blue in the figure) values of $\mu$. The dashed and dotted grey lines indicate constant values of the $\tilde{b}_1$ mass. The signal models included within the shown contours are excluded at 95% CL. The dashed lines and the shaded band are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid line is the observed limit for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section.
Expected exclusion contour as a function of $m_{\tilde{t}_1}$ and $m_{\tilde{\chi}^0_1}$ in the pMSSM model described in the text. Pair production of $\tilde{t}_1$ and $\tilde{b}_1$ are considered. Limits are set for both the positive (red in the figure) and negative (blue in the figure) values of $\mu$. The dashed and dotted grey lines indicate constant values of the $\tilde{b}_1$ mass. The signal models included within the shown contours are excluded at 95% CL. The dashed lines and the shaded band are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid line is the observed limit for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section.
Observed exclusion contour as a function of $m_{\tilde{t}_1}$ and $m_{\tilde{\chi}^0_1}$ in the pMSSM model described in the text. Pair production of $\tilde{t}_1$ and $\tilde{b}_1$ are considered. Limits are set for both the positive (red in the figure) and negative (blue in the figure) values of $\mu$. The dashed and dotted grey lines indicate constant values of the $\tilde{b}_1$ mass. The signal models included within the shown contours are excluded at 95% CL. The dashed lines and the shaded band are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid line is the observed limit for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section.
Illustration of the best expected signal region per signal grid point for the simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
Two-body selection background fit results for the VR in the SRA$^{2-body}$ and SRB$^{2-body}_{140}$ background-only fit. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $t\bar t Z$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t t$, $t\bar t t\bar t$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty reaches down to zero predicted events, in which case the negative uncertainty is truncated.
Two-body selection background fit results for the VR in the SRC$^{2-body}_{110}$ background-only fit. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $t\bar t Z$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t t$, $t\bar t t\bar t$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty reaches down to zero predicted events, in which case the negative uncertainty is truncated.
Three-body selection background fit results for the VRs in the SR$^{3-body}_{W}$ and SR$^{3-body}_{t}$ background-only fits. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $VV$ and $Z_{\tau\tau}$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t $, $t\bar t t\bar t$ , $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty reaches down to zero predicted events, in which case the negative uncertainty is truncated.
Four-body selection background fit results for the VRs in the SR$^{4-body}$ background-only fit. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $VV$ and $Z_{\tau\tau}$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t $, $t\bar t t\bar t$ , $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty reaches down to zero predicted events, in which case the negative uncertainty is truncated.
Two-body selection distribution of $E_{T}^{miss}$ for events satisfying all the VR$^{2-body}_{VV-DF}$ selections, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events.
Two-body selection distribution of $m_{T2}^{ll}$ for events satisfying all the VR$^{2-body}_{t\bar{t}}$ selections, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events.
Two-body selection distribution of $m_{T2}^{ll}$ for events satisfying all the VR$^{2-body}_{t\bar{t},3j}$ selections, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events.
Three-body selection distributions of $M_{\Delta}^{R}$ in events that satisfy all the $VR^{3-body}_{t\bar{t}}$ selection criteria after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events.
Three-body selection distributions of $R_{p_{T}}$ in events that satisfy all the $VR^{3-body}_{VV-SF}$ selection criteria after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events.
Three-body selection distributions of $R_{p_{T}}$ in events that satisfy all the $VR^{3-body}_{VV-DF}$ selection criteria after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events.
Four-body selection distributions of $R_{2\ell 4j}$ for events with at least 2 jets (with the two leading required not be identified as $b$-jets), a leading jet $p_{T} >150$ GeV and satisfying the SR$^{4-body}$ requirements on the leptons. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The fake and non-prompt lepton backgrounds are estimated from data, the other backgrounds are estimated from MC simulation with a background fit as described in Section6. The rightmost bin of each plot includes overflow events. In order to enhance the contribution from fake or non-prompt leptons, the lepton pair is required to have the same charge.
Four-body selection distributions of $R_{2\ell}$ for events with at least 2 jets (with the two leading required not be identified as $b$-jets), a leading jet $p_{T} >150$ GeV and satisfying the SR$^{4-body}$ requirements on the leptons. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The fake and non-prompt lepton backgrounds are estimated from data, the other backgrounds are estimated from MC simulation with a background fit as described in Section6. The rightmost bin of each plot includes overflow events. In order to enhance the contribution from fake or non-prompt leptons, the lepton pair is required to have the same charge.
Four-body selection distributions of $E^{miss}_{T}$ for events satisfying all the VR$^{4-body}_{t\bar{t}}$ selections, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and systematic uncertainty. The fake and non-prompt lepton backgrounds are estimated from data, the other backgrounds are estimated from MC simulation with a background fit as described in Section 6}. The rightmost bin of each plot includes overflow events.
Number of signal events selected at different stages for some scenarios in the $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ model.
Number of signal events selected at different stages for some scenarios in the $\tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}_1$ model.
Number of signal events selected at different stages for some scenarios in the $\tilde{t}_1 \rightarrow b W \tilde{\chi}^{0}_1$ model.
Number of signal events selected at different stages for some scenarios in the $\tilde{t}_1 \rightarrow b f f \prime \tilde{\chi}^0_1$ model.
Upper limits on cross-sections (in fb) at 95% CL for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{}(*)\tilde{\chi}^{0}_1$ with 100% branching ratio.
Upper limits on cross-sections (in fb) at 95% CL for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}_1$ with 100% branching ratio. The lightest chargino mass is assumed to be close to the stop mass, $m_{\tilde{\chi}^{\pm}_1} = m_{\tilde{t}_1}-10$ GeV.
Upper limits on cross-sections (in fb) at 95% CL for each signal model, assuming the pMSSM model described in the text. Pair production of $\tilde{t}_{1}$ and $\tilde{b}_{1}$ are considered. Limits are set for both positive (top) and negative (bottom) values of $\mu$.
Upper limits on cross-sections (in fb) at 95% CL for each signal model, assuming the pMSSM model described in the text. Pair production of $\tilde{t}_{1}$ and $\tilde{b}_{1}$ are considered. Limits are set for both positive (top) and negative (bottom) values of $\mu$.
SRA$^{2-body}_{120,140}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{120,140}$ Same Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{140,160}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{140,160}$ Same Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{160,180}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{160,180}$ Same Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{180}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{180}$ Same Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRB$^{2-body}_{120,140}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRB$^{2-body}_{120,140}$ SF acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRB$^{2-body}_{140}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRB$^{2-body}_{140}$ SF acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRC$^{2-body}_{110}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRC$^{2-body}_{110}$ SF acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SR$^{3-body}_{W}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{3-body}_{W}$ SF acceptance for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{3-body}_{t}$ Different Flavour acceptance for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{3-body}_{t}$ SF acceptance for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{4-body}$ acceptance for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b f f \prime \tilde{\chi}^0_1$ with 100% branching ratio.
SRA$^{2-body}_{120,140}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{120,140}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{140,160}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{140,160}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{160,180}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{160,180}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{180}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRA$^{2-body}_{180}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_1$ with 100% branching ratio.
SRB$^{2-body}_{120,140}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRB$^{2-body}_{120,140}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRB$^{2-body}_{140}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRB$^{2-body}_{140}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRC$^{2-body}_{110}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SRC$^{2-body}_{110}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}^0_1$ with 100% branching ratio.
SR$^{3-body}_{W}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{3-body}_{W}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{3-body}_{t}$ Different Flavour efficiency for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{3-body}_{t}$ Same Flavour efficiency for each signal model, assuming $\tilde{t}_{1}$ pair production, decaying via $\tilde{t}_{1}\rightarrow t+\tilde{\chi}_{1}^{0}$ with 100% branching ratio.
SR$^{4-body}$ efficiency for each signal model, assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b f f \prime \tilde{\chi}^0_1$ with 100% branching ratio.
A search for the supersymmetric partners of the Standard Model bottom and top quarks is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks ($\tilde{b}_{1}$ and $\tilde{t}_{1}$) is searched for in final states with $b$-tagged jets and missing transverse momentum. Distinctive selections are defined with either no charged leptons (electrons or muons) in the final state, or one charged lepton. The zero-lepton selection targets models in which the $\tilde{b}_{1}$ is the lightest squark and decays via $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$, where $\tilde{\chi}^{0}_{1}$ is the lightest neutralino. The one-lepton final state targets models where bottom or top squarks are produced and can decay into multiple channels, $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$ and $\tilde{b}_{1} \rightarrow t \tilde{\chi}^{\pm}_{1}$, or $\tilde{t}_{1} \rightarrow t \tilde{\chi}^{0}_{1}$ and $\tilde{t}_{1} \rightarrow b \tilde{\chi}^{\pm}_{1}$, where $\tilde{\chi}^{\pm}_{1}$ is the lightest chargino and the mass difference $m_{\tilde{\chi}^{\pm}_{1}}- m_{\tilde{\chi}^{0}_{1}}$ is set to 1 GeV. No excess above the expected Standard Model background is observed. Exclusion limits at 95\% confidence level on the mass of third-generation squarks are derived in various supersymmetry-inspired simplified models.
- - - - - - - - - - - - - - - - - - - - <br/><b>Acceptance:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Acceptance1">b0L-SRA350</a> <a href="79165?version=1&table=Acceptance2">b0L-SRA450</a> <a href="79165?version=1&table=Acceptance3">b0L-SRA550</a> <a href="79165?version=1&table=Acceptance4">b0L-SRB</a> <a href="79165?version=1&table=Acceptance5">b0L-SRC</a> <a href="79165?version=1&table=Acceptance6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Acceptance7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Acceptance8">b1L-SRA450</a> <a href="79165?version=1&table=Acceptance9">b1L-SRA600</a> <a href="79165?version=1&table=Acceptance10">b1L-SRA750</a> <a href="79165?version=1&table=Acceptance11">b1L-SRB</a> <a href="79165?version=1&table=Acceptance12">b1L-best</a><br/><br/><b>Efficiency:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Efficiency1">b0L-SRA350</a> <a href="79165?version=1&table=Efficiency2">b0L-SRA450</a> <a href="79165?version=1&table=Efficiency3">b0L-SRA550</a> <a href="79165?version=1&table=Efficiency4">b0L-SRB</a> <a href="79165?version=1&table=Efficiency5">b0L-SRC</a> <a href="79165?version=1&table=Efficiency6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Efficiency7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Efficiency8">b1L-SRA450</a> <a href="79165?version=1&table=Efficiency9">b1L-SRA600</a> <a href="79165?version=1&table=Efficiency10">b1L-SRA750</a> <a href="79165?version=1&table=Efficiency11">b1L-SRB</a> <a href="79165?version=1&table=Efficiency12">b1L-best</a><br/><br/><b>Best SR Mapping:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=BestSR4">b0L</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=BestSR1">b1L</a> <a href="79165?version=1&table=BestSR2">b0L</a> <a href="79165?version=1&table=BestSR3">combined</a><br/><br/><b>Exclusion Contour:</b><br/><i>symmetric:</i> b0L-SRA350 <a href="79165?version=1&table=Contour1">exp</a> <a href="79165?version=1&table=Contour2">obs</a> b0L-SRA450 <a href="79165?version=1&table=Contour5">exp</a> <a href="79165?version=1&table=Contour6">obs</a> b0L-SRA550 <a href="79165?version=1&table=Contour9">exp</a> <a href="79165?version=1&table=Contour10">obs</a> b0L-SRB <a href="79165?version=1&table=Contour11">exp</a> <a href="79165?version=1&table=Contour12">obs</a> b0L-SRC <a href="79165?version=1&table=Contour15">exp</a> <a href="79165?version=1&table=Contour16">obs</a> b0L-best <a href="79165?version=1&table=Contour17">exp</a> <a href="79165?version=1&table=Contour18">obs</a><br/><i>asymmetric:</i> b0L-SRA350 <a href="79165?version=1&table=Contour3">exp</a> <a href="79165?version=1&table=Contour4">obs</a> b0L-SRA450 <a href="79165?version=1&table=Contour7">exp</a> <a href="79165?version=1&table=Contour8">obs</a> b0L-SRB <a href="79165?version=1&table=Contour13">exp</a> <a href="79165?version=1&table=Contour14">obs</a> b0L-best <a href="79165?version=1&table=Contour19">exp</a> <a href="79165?version=1&table=Contour20">obs</a> b1L-SRA300-2j <a href="79165?version=1&table=Contour21">exp</a> <a href="79165?version=1&table=Contour22">obs</a> b1L-SRA450 <a href="79165?version=1&table=Contour23">exp</a> <a href="79165?version=1&table=Contour24">obs</a> b1L-SRA600 <a href="79165?version=1&table=Contour25">exp</a> <a href="79165?version=1&table=Contour26">obs</a> b1L-SRA750 <a href="79165?version=1&table=Contour27">exp</a> <a href="79165?version=1&table=Contour28">obs</a> b1L-SRB <a href="79165?version=1&table=Contour29">exp</a> <a href="79165?version=1&table=Contour30">obs</a> b1L-best <a href="79165?version=1&table=Contour31">exp</a> <a href="79165?version=1&table=Contour32">obs</a> A-LowMass <a href="79165?version=1&table=Contour33">exp</a> <a href="79165?version=1&table=Contour34">obs</a> A-HighMass <a href="79165?version=1&table=Contour35">exp</a> <a href="79165?version=1&table=Contour36">obs</a> B combination <a href="79165?version=1&table=Contour37">exp</a> <a href="79165?version=1&table=Contour38">obs</a> Best combination <a href="79165?version=1&table=Contour39">exp</a> <a href="79165?version=1&table=Contour40">obs</a><br/><br/><b>SR Distribution:</b><br/><a href="79165?version=1&table=SRdistribution1">b0L-SRA</a>: $m_{\mathrm{CT}}$ <a href="79165?version=1&table=SRdistribution2">b0L-SRB</a>: $\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ <a href="79165?version=1&table=SRdistribution3">b0L-SRC</a>: ${\cal A}$ <a href="79165?version=1&table=SRdistribution4">b1L-SRA300-2j</a>: $\mathrm{m_{bb}}$ <a href="79165?version=1&table=SRdistribution5">b1L-SRA</a>: $\mathrm{m_{eff}}$ <a href="79165?version=1&table=SRdistribution6">b1L-SRB</a>: $\mathrm{m_{T}}$<br/><br/><b>Cross section upper limit:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Limitoncrosssection1">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection2">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection3">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection4">b0L-SRA550</a> <a href="79165?version=1&table=Limitoncrosssection5">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection6">b0L-SRC</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Limitoncrosssection7">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection8">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection9">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection10">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection11">b1L-best</a> <a href="79165?version=1&table=Limitoncrosssection12">b1L-SRA300-2j</a> <a href="79165?version=1&table=Limitoncrosssection13">b1L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection14">b1L-SRA600</a> <a href="79165?version=1&table=Limitoncrosssection15">b1L-SRA750</a> <a href="79165?version=1&table=Limitoncrosssection16">b1L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection17">best combination</a> <a href="79165?version=1&table=Limitoncrosssection18">A-LowMass</a> <a href="79165?version=1&table=Limitoncrosssection19">A-HighMass</a> <a href="79165?version=1&table=Limitoncrosssection20">B combination</a><br/><br/><b>Cutflow:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=CutflowTable1">b0L-SRA (1 TeV, 1 GeV)</a> <a href="79165?version=1&table=CutflowTable2">b0L-SRB (700 GeV, 450 GeV)</a> <a href="79165?version=1&table=CutflowTable3">b0L-SRC (450 GeV, 430 GeV)</a><br/><i>mixed:</i> <a href="79165?version=1&table=CutflowTable4">b1L-SRA (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable5">b1L-SRA300-2j (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable6">b0L-SRA (700 GeV, 300 GeV)</a><br/><br/><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left)
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA350 signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA450 signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA550 signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRB signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRC signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L- best expected signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA300-2j signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA450 signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA600 signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA750 signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRB signal region.
Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L- best expected signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA350 signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA450 signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA550 signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRB signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRC signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L- best expected signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA300-2j signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA450 signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA600 signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRA750 signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L-SRB signal region.
Signal efficiency (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino, for the b1L- best expected signal region.
b1L signal region with best expected exclusion limit in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino.
b0L signal region with best expected exclusion limit in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino.
combined signal region with best expected exclusion limit in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the asymmetric decay of the sbottom into bottom quark and neutralino or top quark and chargino.
b0L signal region with best expected exclusion limit in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino.
Expected exclusion limit for b0L-SRA350 for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Observed exclusion limit for b0L-SRA350 for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Expected exclusion limit for b0L-SRA350 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b0L-SRA350 for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Expected exclusion limit for b0L-SRA450 for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Observed exclusion limit for b0L-SRA450 for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Expected exclusion limit for b0L-SRA450 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b0L-SRA450 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for b0L-SRA550 for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Observed exclusion limit for b0L-SRA550 for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Expected exclusion limit for b0L-SRB for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Observed exclusion limit for b0L-SRB for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Expected exclusion limit for b0L-SRB for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b0L-SRB for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for b0L-SRC for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Observed exclusion limit for b0L-SRC for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Expected exclusion limit for best b0L SR for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Observed exclusion limit for best b0L SR for sbottom pair production with symmetric decay into a bottom quark and a neutralino.
Expected exclusion limit for best b0L SR for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for best b0L SR for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for b1L-SRA300-2j for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b1L-SRA300-2j for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for b1L-SRA450 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b1L-SRA450 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for b1L-SRA600 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b1L-SRA600 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for b1L-SRA750 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b1L-SRA750 for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for b1L-SRB for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for b1L-SRB for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for best b1L SR for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for best b1L SR for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for A-LowMass combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for A-LowMass combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for A-HighMass combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for A-HighMass combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for B combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for B combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Expected exclusion limit for best combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
Observed exclusion limit for best combination for sbottom pair production with asymmetric decay into a bottom quark and a neutralino or a top quark and a chargino.
$m_{\mathrm{CT}}$ distribution in b0L-SRA. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the fit. The last bin includes overflows.
$\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ distribution in b0L-SRB. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the fit. The last bin includes overflows.
${\cal A}$ distribution in b0L-SRC. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the fit. The last bin includes overflows.
$\mathrm{m_{bb}}$ distribution in b1L-SRA300-2j. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the fit. The last bin includes overflows.
$\mathrm{m_{eff}}$ distribution in b1L-SRA. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the fit. The last bin includes overflows.
$\mathrm{m_{T}}$ distribution in b1L-SRB. All selection criteria are applied, except the selection on the variable that is displayed in the plot. The SM backgrounds are normalized to the values determined in the fit. The last bin includes overflows.
Cross section excluded at 95% CL for best b0L SR as a function of the sbottom and neutralino masses, for a pair produced sbottom with symmetric decay into a bottom and a neutralino.
Cross section excluded at 95% CL for b0L-SRA350 as a function of the sbottom and neutralino masses, for a pair produced sbottom with symmetric decay into a bottom and a neutralino.
Cross section excluded at 95% CL for b0L-SRA450 as a function of the sbottom and neutralino masses, for a pair produced sbottom with symmetric decay into a bottom and a neutralino.
Cross section excluded at 95% CL for b0L-SRA550 as a function of the sbottom and neutralino masses, for a pair produced sbottom with symmetric decay into a bottom and a neutralino.
Cross section excluded at 95% CL for b0L-SRB as a function of the sbottom and neutralino masses, for a pair produced sbottom with symmetric decay into a bottom and a neutralino.
Cross section excluded at 95% CL for b0L-SRC as a function of the sbottom and neutralino masses, for a pair produced sbottom with symmetric decay into a bottom and a neutralino.
Cross section excluded at 95% CL for best b0L SR as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b0L-SRA350 as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b0L-SRA450 as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b0L-SRB as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for best b1L SR as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b1L-SRA300-2j as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b1L-SRA450 as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b1L-SRA600 as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b1L-SRA750 as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for b1L-SRB as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for best combination as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for A-LowMass combination as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for A-HighMass combination as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cross section excluded at 95% CL for B combination as a function of the sbottom and neutralino masses, for a pair produced sbottom with asymmetric decay into a bottom and a neutralino or a top and a chargino.
Cutflow table in b0L-SRA for a pair produced bottom squark of 1 TeV decaying into a 1 GeV neutralino in a symmetric decay scenario.
Cutflow table in b0L-SRB for a pair produced bottom squark of 700 GeV decaying into a 450 GeV neutralino in a symmetric decay scenario.
Cutflow table in b0L-SRC for a pair produced bottom squark of 450 GeV decaying into a 430 GeV neutralino in a symmetric decay scenario.
Cutflow table in b1L-SRA for a pair produced bottom squark of 700 GeV decaying into a 300 GeV neutralino in a mixed decay scenario.
Cutflow table in b1L-SRA300-2j for a pair produced bottom squark of 700 GeV decaying into a 300 GeV neutralino in a mixed decay scenario.
Cutflow table in b0L-SRA for a pair produced bottom squark of 700 GeV decaying into a 300 GeV neutralino in a mixed decay scenario.
A search for the electroweak production of charginos, neutralinos and sleptons decaying into final states involving two or three electrons or muons is presented. The analysis is based on 36.1 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton--proton collisions recorded by the ATLAS detector at the Large Hadron Collider. Several scenarios based on simplified models are considered. These include the associated production of the next-to-lightest neutralino and the lightest chargino, followed by their decays into final states with leptons and the lightest neutralino via either sleptons or Standard Model gauge bosons; direct production of chargino pairs, which in turn decay into leptons and the lightest neutralino via intermediate sleptons; and slepton pair production, where each slepton decays directly into the lightest neutralino and a lepton. No significant deviations from the Standard Model expectation are observed and stringent limits at 95% confidence level are placed on the masses of relevant supersymmetric particles in each of these scenarios. For a massless lightest neutralino, masses up to 580 GeV are excluded for the associated production of the next-to-lightest neutralino and the lightest chargino, assuming gauge-boson mediated decays, whereas for slepton-pair production masses up to 500 GeV are excluded assuming three generations of mass-degenerate sleptons.
The mll distribution for data and the estimated SM backgrounds in the 2l+0jets channel for SR2-SF-loose. Two signal points are added for comparison.
The mT2 distribution for data and the estimated SM backgrounds in the 2l+0jets channel for SR2-SF-loose. Two signal points are added for comparison.
The mT2 distributions for data and the estimated SM backgrounds in the 2l+0jets channel for the SR2-DF-100 selection. Two signal points are added for comparison.
Distributions of ETmiss for data and the expected SM backgrounds in the 2l+jets channel for SR2-int/high, without the final ETmiss requirement applied. Two signal points are added for comparison.
Distributions of ETmiss for data and the expected SM backgrounds in the 2l+jets channel for SR2-low, without the final ETmiss requirement applied. Two signal points are added for comparison.
Distributions of ETmiss for data and the estimated SM backgrounds in the 3l channel for SR3-slep-a. Two signal points are added for comparison.
Distributions of ETmiss for data and the estimated SM backgrounds in the 3l channel for SR3-slep-b. Two signal points are added for comparison.
Distributions of the third leading lepton pT in SR3-slep-c,d,e. Two signal points are added for comparison.
Distributions of ETmiss for data and the estimated SM backgrounds in the 3l channel for SR3-WZ-0Ja,b,c. Two signal points are added for comparison.
Distributions of ETmiss for data and the estimated SM backgrounds in the 3l channel for SR3-WZ-1Ja. Two signal points are added for comparison.
Distributions of ETmiss for data and the estimated SM backgrounds in the 3l channel for SR3-WZ-1Jb. Two signal points are added for comparison.
Distributions of ETmiss for data and the estimated SM backgrounds in the 3l channel for SR3-WZ-1Jc. Two signal points are added for comparison.
Expected 95% CL exclusion limit for chargino-pair production.
Observed 95% CL exclusion limit for chargino-pair production.
Expected 95% CL exclusion limit for direct slepton production.
Observed 95% CL exclusion limit for direct slepton production.
Expected 95% CL exclusion limit for chargino-neutralino production with slepton-mediated decays.
Observed 95% CL exclusion limit for chargino-neutralino production with slepton-mediated decays.
Expected 95% CL exclusion limit for chargino-neutralino production with W/Z-mediated decays.
Observed 95% CL exclusion limit for chargino-neutralino production with W/Z-mediated decays.
The mT2 distributions for data and the estimated SM backgrounds in the exclusive SF signal regions of the 2l+0jets channel in the regions 111 < mll < 150 GeV (corresponding to SR2-SF-a,b,c,d). Two signal points are added for comparison.
The mT2 distributions for data and the estimated SM backgrounds in the exclusive SF signal regions of the 2l+0jets channel in the regions 150 < mll < 200 GeV (corresponding to SR2-SF-e,f,g,h). Two signal points are added for comparison.
The mT2 distributions for data and the estimated SM backgrounds in the exclusive SF signal regions of the 2l+0jets channel in the regions 200 < mll < 300 GeV (corresponding to SR2-SF-i,j,k,l). Two signal points are added for comparison.
The mT2 distributions for data and the estimated SM backgrounds in the exclusive SF signal regions of the 2l+0jets channel in the regions mll > 300 GeV (corresponding to SR2-SF-m). Two signal points are added for comparison.
Signal acceptance for C1C1 production in SR2-SFloose for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$ .
Signal efficiency for C1C1 production in SR2-SFloose for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal acceptance for C1C1 production in SR2-SFtight for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal efficiency for C1C1 production in SR2-SFtight for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal acceptance for C1C1 production in SR2-DF100 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal efficiency for C1C1 production in SR2-DF100 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal acceptance for C1C1 production in SR2-DF150 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal efficiency for C1C1 production in SR2-DF150 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal acceptance for C1C1 production in SR2-DF200 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal efficiency for C1C1 production in SR2-DF200 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal acceptance for C1C1 production in SR2-DF300 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal efficiency for C1C1 production in SR2-DF300 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
Signal acceptance for direct Slepton production in SR2-SF-Loose for the process P P -> $\tilde{\ell}^\pm \tilde{\ell}^\mp$ -> $\ell^\pm \ell^\mp \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for direct Slepton production in SR2-SF-Loose for the process P P -> $\tilde{\ell}^\pm \tilde{\ell}^\mp$ -> $\ell^\pm \ell^\mp \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for direct Slepton production in SR2-SF-Tight for the process P P -> $\tilde{\ell}^\pm \tilde{\ell}^\mp$ -> $\ell^\pm \ell^\mp \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for direct Slepton production in SR2-SF-Tight for the process P P -> $\tilde{\ell}^\pm \tilde{\ell}^\mp$ -> $\ell^\pm \ell^\mp \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for C1N2 production in SR2-low for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->2j) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for C1N2 production in SR2-low for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->2j) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for C1N2 production in SR2-int for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->2j) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for C1N2 production in SR2-int for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->2j) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for C1N2 production in SR2-high for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->2j) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for C1N2 production in SR2-high for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->2j) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for Slep production in SR3-slepa for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal efficiency for Slep production in SR3-slepa for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal acceptance for Slep production in SR3-slepb for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal efficiency for Slep production in SR3-slepb for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal acceptance for Slep production in SR3-slepc for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal efficiency for Slep production in SR3-slepc for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal acceptance for Slep production in SR3-slepd for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal efficiency for Slep production in SR3-slepd for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal acceptance for Slep production in SR3-slepe for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal efficiency for Slep production in SR3-slepe for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
Signal acceptance for WZ production in SR3-WZ-0Ja for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for WZ production in SR3-WZ-0Ja for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for WZ production in SR3-WZ-0Jb for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for WZ production in SR3-WZ-0Jb for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for WZ production in SR3-WZ-0Jc for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for WZ production in SR3-WZ-0Jc for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for WZ production in SR3-WZ-1Ja for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for WZ production in SR3-WZ-1Ja for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for WZ production in SR3-WZ-1Jb for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for WZ production in SR3-WZ-1Jb for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal acceptance for WZ production in SR3-WZ-1Jc for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal efficiency for WZ production in SR3-WZ-1Jc for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
Signal regions contributing to the observed exclusion limit for chargino-neutralino production with W/Z-mediated decays.
Expected 95% CL exclusion limit for chargino-neutralino production with W/Z-mediated decays in the 2l+jets channel.
Observed 95% CL exclusion limit for chargino-neutralino production with W/Z-mediated decays in the 2l+jets channel.
Expected 95% CL exclusion limit for chargino-neutralino production with W/Z-mediated decays in the 3l channel.
Observed 95% CL exclusion limit for chargino-neutralino production with W/Z-mediated decays in the 2l+jets channel.
Expected 95% CL exclusion limit for left-handed slepton production.
Observed 95% CL exclusion limit for left-handed slepton production.
Expected 95% CL exclusion limit for right-handed slepton production.
Observed 95% CL exclusion limit for right-handed slepton production.
95% upper limit on production cross-section for chargino-pair production.
95% upper limit on production cross-section for direct slepton production.
95% upper limit on production cross-section for chargino-neutralino production with slepton-mediated decays.
95% upper limit on production cross-section for chargino-neutralino production with W/Z-mediated decays
<b>Cutflow 1</b> Event counts for a signal point in SR2-SF-loose for the process P P -> $\tilde{\ell}^\pm \tilde{\ell}^\mp$ -> $\ell^\pm \ell^\mp \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
<b>Cutflow 2</b> Event counts for a signal point in SR2-SF-loose and SR2-DF-100 for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
<b>Cutflow 3</b> Event counts for two signal points in SR2-int for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
<b>Cutflow 4</b> Event counts for two signal points in SR2-low for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_1^\mp$ -> 2x $\ell \nu \widetilde{\chi}_1^0$.
<b>Cutflow 5</b> Event counts for two signal points in SR3-WZ-0Ja/b/c and SR3-WZ-1Ja/b/c for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $W$(->l $\nu$) $Z$(->2l) $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$.
<b>Cutflow 6</b> Event counts for two signal points in SR3-slepa-e for the process P P -> $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ -> $\tilde{\ell}_L \tilde{\ell}_L l (\tilde{\nu}\nu), l \tilde{\nu} \tilde{\ell}_L (\tilde{\nu}\nu)$ -> $l \nu \widetilde{\chi}_1^0 l l (\nu \nu) \widetilde{\chi}_1^0$.
A search for long-lived, massive particles predicted by many theories beyond the Standard Model is presented. The search targets final states with large missing transverse momentum and at least one high-mass displaced vertex with five or more tracks, and uses 32.8 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC. The observed yield is consistent with the expected background. The results are used to extract 95\% CL exclusion limits on the production of long-lived gluinos with masses up to 2.37 TeV and lifetimes of $\mathcal{O}(10^{-2})$-$\mathcal{O}(10)$ ns in a simplified model inspired by Split Supersymmetry.
Vertex reconstruction efficiency as a function of radial position $R$ with and without the special LRT processing for one $R$-hadron signal sample with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.
Vertex reconstruction efficiency as a function of radial position $R$ for two $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $\tau_{\tilde{g}} = 1$ ns and different neutralino masses. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.
Fractions of selected events for several signal MC samples with a gluino lifetime $\tau = 1$ ns, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.
Fractions of selected events for several signal MC samples with a mass difference $\Delta m = 100$ GeV, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.
Two-dimensional distribution of $m_{\mathrm{DV}}$ and track multiplicity for DVs in data events and events of a $R$-hadron signal sample with $m_{\tilde{g}} = 1.4$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns that satisfy all signal region event selection criteria.
Two-dimensional distribution of $m_{\mathrm{DV}}$ and track multiplicity for DVs in data events and events of a $R$-hadron signal sample with $m_{\tilde{g}} = 1.4$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 1.32$ TeV and $\tau_{\tilde{g}} = 1$ ns that satisfy all signal region event selection criteria.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Lower 95% CL limits on $m_{\tilde{g}}$ for fixed $m_{\tilde{\chi}_{1}^{0}}=100$ GeV as a function of lifetime $\tau$.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Lower 95% CL limit on $m_{\tilde{g}}$ for fixed $\Delta m=100$ GeV as a function of lifetime $\tau$.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=1.4$ TeV and fixed $\tau=1$ ns as a function of $m_{\tilde{\chi}_{1}^{0}}$.
Upper 95% CL limits on the signal cross section for $m_{\tilde{g}}=2.0$ TeV and fixed $\tau=1$ ns as a function of $m_{\tilde{\chi}_{1}^{0}}$.
Observed 95% CL limit as a function of $m_{\tilde{g}}$ and $m_{\tilde{\chi}_{1}^{0}}$ for fixed $\tau=1$ ns.
Two-dimensional distributions of $x$-$y$ positions of vertices observed in the data passing the vertex pre-selection and satisfying all signal region event-level requirements.
Distribution of the mass $m_{\mathrm{DV}}$ for vertices in data events and in events of five $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and different $\tau_{\tilde{g}}$ that satisfy the signal region event requirements. All DV selections are applied except for the $m_{\mathrm{DV}}$ and track multiplicity requirements.
Distribution of the track multiplicity $n_{\mathrm{Tracks}}$ for vertices in data events and events of five $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and and different $\tau_{\tilde{g}}$ that satisfy the signal region event requirements. All DV selections are applied except for the $m_{\mathrm{DV}}$ and track multiplicity requirements. The track multiplicity distribution requires vertices to have $m_{\mathrm{DV}}>3$ GeV.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{g}}$ and $\tau$ for $m_{\tilde{\chi}_{1}^{0}}=100$ GeV. For the mass limits see the entry of Figure 8b.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{g}}$ and $\tau$ for $\Delta m=100$ GeV. For the mass limits see the entry of Figure 9b.
Observed cross section upper 95% CL limits as a function of $m_{\tilde{\chi}_{1}^{0}}$ and $m_{\tilde{g}}$ for $\tau = 1$ ns. For the mass limits see the entry of Figure 10b.
Parameterized event selection efficiencies as a function of truth MET for events which have all truth decay vertices occurring before the start of the ATLAS calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized event selection efficiencies as a function of truth MET for events which have the furthest truth decay occurring inside the calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized event selection efficiencies as a function of truth MET for events which have the furthest truth decay occurring after the end of the ATLAS calorimeter. Event-level efficiencies are evaluated for events that have truth MET $> 200$ GeV, pass the trackless jet requirement, and have at least one displaced truth decay within the fiducial volume. To satisfy the event-level efficiency, events must then pass the full event selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $4$ mm $< R_{\mathrm{decay}} < 22$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $22$ mm $< R_{\mathrm{decay}} < 25$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $25$ mm $< R_{\mathrm{decay}} < 29$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $29$ mm $< R_{\mathrm{decay}} < 38$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $38$ mm $< R_{\mathrm{decay}} < 46$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $46$ mm $< R_{\mathrm{decay}} < 73$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $73$ mm $< R_{\mathrm{decay}} < 84$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $84$ mm $< R_{\mathrm{decay}} < 111$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $111$ mm $< R_{\mathrm{decay}} < 120$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $120$ mm $< R_{\mathrm{decay}} < 145$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $145$ mm $< R_{\mathrm{decay}} < 180$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
Parameterized vertex level efficiencies as a function of number of particles associated to a truth decay vertex, and the vertex invariant mass for truth decays with $180$ mm $< R_{\mathrm{decay}} < 300$ mm. Selected particles are required to have nonzero electric charge, $p_{T}(|Q|=1) > 1$ GeV, and $d_0 > 2$ mm. The per-vertex efficiency is evaluated only for truth vertices that have at least 5 associated tracks, an invariant mass $> 10$ GeV, and are in the region $4$ mm $< R_{\mathrm{decay}} < 300$ mm, and $|Z_{\mathrm{decay}}| < 300$ mm. A truth vertex satisfies the vertex level efficiency if it can be matched to a reconstructed DV which passes the final vertex selection.
A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons ($e$ or $\mu$), or at least three isolated leptons, is presented. The analysis relies on the identification of $b$-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton--proton collisions at $\sqrt{s}= 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb$^{-1}$, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring $R$-parity conservation or $R$-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$.
Expected 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$.
Observed 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$.
Expected 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario with non-universal Higgs masses (NUHM2, see the publication Refs. [31-32]). The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde{d}^{}_\mathrm{R}\tilde{d}^{*}_\mathrm{R}$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde{d}^{}_\mathrm{R}\tilde{d}^{*}_\mathrm{R}$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2bS, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1500 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2bH, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1700 GeV and $m(\tilde \chi_1^0)$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2Lsoft1b, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via offshell top squark and top quark, $\tilde g\to t\bar{b}W^{-}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1200 GeV and $m(\tilde \chi_1^0)$ = 940 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2Lsoft2b, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via offshell top squark and top quark, $\tilde g\to t\bar{b}W^{-}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1200 GeV and $m(\tilde \chi_1^0)$ = 900 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0bS, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1200 GeV, $m(\tilde \chi_1^\pm)$ = 1050 GeV, $m(\tilde \chi_2^0)$ = 975 GeV and $m(\tilde \chi_1^0)$ = 900 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0bH, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 850 GeV, $m(\tilde \chi_2^0)$ = 475 GeV and $m(\tilde \chi_1^0)$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3L0bS, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1400 GeV, $m(\tilde \chi_2^0)$ = 1250 GeV, $m(\tilde\ell)=m(\tilde\nu)$ = 1175 GeV and $m(\tilde \chi_1^0)$ = 1100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3L0bH, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1800 GeV, $m(\tilde \chi_2^0)$ = 950 GeV, $m(\tilde\ell)=m(\tilde\nu)$ = 475 GeV and $m(\tilde \chi_1^0)$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1bS, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 600 GeV, $m(\tilde \chi_1^\pm)$ = 350 GeV and $m(\tilde \chi_1^0)$ = 250 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1bH, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 750 GeV, $m(\tilde \chi_1^\pm)$ = 200 GeV and $m(\tilde \chi_1^0)$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 700 GeV, $m(\tilde \chi_2^0)$ = 525 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 425 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L1bH, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1400 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L0b, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1400 GeV, $m(\tilde{\chi}_1^0)$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L2bH, in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1800 GeV, $m(\tilde{\chi}_1^0)$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L2bS, in a SUSY scenario where pairs of down-down squark-rights are produced and decay into a pair of top and bottom quarks via a non-zero baryon-number-violating RPV coupling $\lambda^{''}_{331}$, $\tilde{d}^{}_\mathrm{R}\to \bar t\bar b$. The masses of the superpartners involved in the process are set to $m(\tilde{d}^{}_\mathrm{R})$ = 600 GeV, $m(\tilde g)$ = 2000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L1bS, in a SUSY scenario where pairs of down-down squarks are produced and decay into a pair of top and a light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$ or $\lambda^{''}_{322}$, $\tilde{d}^{}_\mathrm{R}\to \bar t\bar s/\bar t\bar d$. The masses of the superpartners involved in the process are set to $m(\tilde{d}^{}_\mathrm{R})$ = 600 GeV, $m(\tilde g)$ = 2000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L1bM, in a SUSY scenario where pairs of down-down squarks are produced and decay into a pair of top and a light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$ or $\lambda^{''}_{322}$, $\tilde{d}^{}_\mathrm{R}\to \bar t\bar s/\bar t\bar d$. The masses of the superpartners involved in the process are set to $m(\tilde{d}^{}_\mathrm{R})$ = 1000 GeV, $m(\tilde g)$ = 2000 GeV. Only statistical uncertainties are shown.
A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.
Distribution of the total visible transverse energy $H_{\mathrm{T}}$ for selected diphoton events, after requiring $\Delta\phi_{\mathrm{min}} (\mathrm{jet}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$ but before application of a requirement on $E_{\mathrm{T}}^{\mathrm{miss}}$ and $\Delta\phi_{\mathrm{min}} (\gamma, E_{\mathrm{T}}^{\mathrm{miss}})$ ($\gamma\gamma$ pre-selection). Also shown are the expected $H_{\mathrm{T}}$ distributions of contributing SM processes as well as those for two points each in the parameter spaces of the gluino-bino and wino-bino GGM models (mass values in GeV). Events outside the range of the displayed region are included in the highest-value bin.
Distribution of $R_{\mathrm{T}}^{4}$ for the sample satisfying all $\mathrm{SR}^{\gamma j}_{L}$ selection criteria except the $R_{\mathrm{T}}^{4}$ requirement itself, but with a relaxed requirement of $E_{\mathrm{T}}^{\mathrm{miss}} > 100$ GeV. Also shown are the expected $R_{\mathrm{T}}^{4}$ distributions of contributing SM processes as well as those for two points in the $m_{\tilde{g}}$-$m_{\tilde{\chi}^{0}_{1}}$ parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value of the gluino mass arises from the choice $M_3 = 1900$ GeV, while the values of the $\tilde{\chi}^{0}_{1}$ mass arise from the choices $\mu = 400$ and $\mu = 600$ GeV, combined with the constraint that the branching fraction of $\tilde{\chi}^{0}_{1} \to \gamma\tilde{G}$ be 50%. The vertical dashed line and left-pointing arrow shows the region of the $R_{\mathrm{T}}^{4}$ observable selected for inclusion in $\mathrm{SR}^{\gamma j}_{L}$. Uncertainties are shown as hatched bands for the various expected sources of SM background (statistical only) and as error bars for data. The lower panels show the ratio of the data to the SM prediction.
Comparisons between expected and observed content of the validation and signal regions for the diphoton analysis. The uncertainties in the numbers of expected events are the combined statistical and systematic uncertainties. The lower panel shows the pull (difference between observed and expected event counts normalized by the uncertainty) for each region.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for the ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,100) GeV and ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,800) GeV models. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma\gamma}_{W-L}$ and $\mathrm{SR}^{\gamma\gamma}_{W-H}$. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of combined statistical and systematic uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for the ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,100) GeV and ($m_{\tilde{W}}$, $m_{\tilde{\chi}^{0}_{1}}$) = (1000,800) GeV models. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma\gamma}_{W-L}$ and $\mathrm{SR}^{\gamma\gamma}_{W-H}$. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of combined statistical and systematic uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Comparisons between expected and observed content of the validation and signal regions for the photon+jets analysis. The uncertainties in the expected numbers of events are the combined statistical and systematic uncertainties. The lower panel shows the pull (difference between observed and expected event counts normalized by the uncertainty) for each region.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma j}_{H}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for points in the $m_{\tilde{g}}-m_{\tilde{\chi}^{0}_{1}}$ parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value of the gluino mass arises from the choice $M_{3}$ = 1900 GeV. The $\tilde{\chi}^{0}_{1}$ mass values of 1868, 1920, 442 and 652 GeV arise from the choices $\mu$ = 1810, 1868, 400 and 600 GeV, respectively, combined with the constraint that the branching fraction of $\tilde{\chi}^{0}_{1}$ $\to \gamma \tilde{G}$ be 50%. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma j}_{H}$ and $\mathrm{SR}^{\gamma j}_{L}$ for $\mathrm{SR}^{\gamma j}_{L200}$, the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement is 200 GeV rather than 300 GeV. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of statistical uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Distribution of the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ for the sample satisfying all requirements of the $\mathrm{SR}^{\gamma j}_{L}$ or $\mathrm{SR}^{\gamma j}_{L200}$ selection except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement itself. Overlaid are the expected SM backgrounds, separated into the various contributing sources. Also shown are the signal expectations for points in the $m_{\tilde{g}}-m_{\tilde{\chi}^{0}_{1}}$ parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value of the gluino mass arises from the choice $M_{3}$ = 1900 GeV. The $\tilde{\chi}^{0}_{1}$ mass values of 1868, 1920, 442 and 652 GeV arise from the choices $\mu$ = 1810, 1868, 400 and 600 GeV, respectively, combined with the constraint that the branching fraction of $\tilde{\chi}^{0}_{1} \to \gamma \tilde{G}$ be 50%. The vertical dashed lines and right-pointing arrows show the region of the $E_{\mathrm{T}}^{\mathrm{miss}}$ observable selected for inclusion in $\mathrm{SR}^{\gamma j}_{H}$ and $\mathrm{SR}^{\gamma j}_{L}$ for $\mathrm{SR}^{\gamma j}_{L200}$, the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement is 200 GeV rather than 300 GeV. The lower panels show the ratio of observed data to the combined SM expectation. For these plots, the band represents the range of statistical uncertainty in the SM expectation. Events outside the range of the displayed region are included in the highest-value bin.
Expected exclusion limits in the gluino-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 1600$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 1600$ GeV.
Observed exclusion limits in the gluino--bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 1600$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 1600$ GeV.
Expected exclusion limit in the squark-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 900$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 900$ GeV.
Observed exclusion limit in the squark--bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 900$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}} < 900$ GeV.
Expected exclusion limit in the wino-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 400$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}}$ < 400$ GeV.
Observed exclusion limit in the wino-bino mass plane, using the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ analysis for $m_{\tilde{\chi}^{0}_{1}} > 400$ GeV and the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ analysis for $m_{\tilde{\chi}^{0}_{1}}$ < 400$ GeV.
Expected exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis.
Observed exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis.
Distribution of the transverse momentum $p_{\mathrm{T}} (\ell\gamma\gamma)$ of events in the $\ell\gamma\gamma$ control region (except without a cut on $p_{\mathrm{T}} (\ell\gamma\gamma)$). Also shown is the expected contribution from various SM sources, including $W(\to\ell\nu) + \gamma\gamma$ production itself. The displayed uncertainties are a combination of those from all SM sources except $W(\to\ell\nu) + \gamma\gamma$ production, and include statistical and systematic uncertainties.
Distribution of $E_{\mathrm{T}}^{\mathrm{miss}}$ for diphoton events in a validation region defined by a requirement of $H_{\mathrm{T}} > 1750$ GeV. Also shown is the expected contribution from various SM sources, as well as their combined statistical and systematic uncertainties.
Distribution of $H_{\mathrm{T}}$ for diphoton events in a validation region defined by requirement of $E_{\mathrm{T}}^{\mathrm{miss}} > 100$ GeV. Also shown is the expected contribution from various SM sources, as well as their combined statistical and systematic uncertainties.
Distribution of $m_{\mathrm{eff}}$ for events satisfying all requirements $\mathrm{SR}^{\gamma j}_{H}$ save the $m_{\mathrm{eff}}$ requirement itself. Also shown is the expected contribution from various SM sources, and their combined statistical uncertainties.
Distribution of $m_{\mathrm{eff}}$ for events satisfying all requirements $\mathrm{SR}^{\gamma j}_{L}$ save the $m_{\mathrm{eff}}$ requirement itself. Also shown is the expected contribution from various SM sources, and their combined statistical uncertainties.
Derived exclusion limits for the gluino-bino GGM model explored by the diphoton analysis. For each point in the gluino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the squark-bino GGM model explored by the diphoton analysis. For each point in the squark-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the wino-bino GGM model explored by the diphoton analysis. For each point in the wino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{W-L}$ or $\mathrm{SR}^{\gamma\gamma}_{W-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis. For each point in the higgsino-bino parameter space, the SR ($\mathrm{SR}^{\gamma j}_{L}$ or $\mathrm{SR}^{\gamma j}_{H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The model dependent upper limits on cross-section (fb) are shown by grey numbers for each signal point.
Derived exclusion limits for the gluino-bino GGM model explored by the diphoton analysis. For each point in the gluino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where SL and SH mean $\mathrm{SR}^{\gamma\gamma}_{S-L}$ and $\mathrm{SR}^{\gamma\gamma}_{S-H}$, respectively.
Derived exclusion limits for the squark-bino GGM model explored by the diphoton analysis. For each point in the squark-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{S-L}$ or $\mathrm{SR}^{\gamma\gamma}_{S-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where SL and SH mean $\mathrm{SR}^{\gamma\gamma}_{S-L}$ and $\mathrm{SR}^{\gamma\gamma}_{S-H}$, respectively.
Derived exclusion limits for the wino--bino GGM model explored by the diphoton analysis. For each point in the wino-bino parameter space, the SR ($\mathrm{SR}^{\gamma\gamma}_{W-L}$ or $\mathrm{SR}^{\gamma\gamma}_{W-H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where WL and WH mean $\mathrm{SR}^{\gamma\gamma}_{W-L}$ and $\mathrm{SR}^{\gamma\gamma}_{W-H}$, respectively.
Derived exclusion limits for the $\mu > 0$ higgsino-bino GGM model explored by the photon+jets analysis. For each point in the higgsino-bino parameter space, the SR ($\mathrm{SR}^{\gamma j}_{L}$ or $\mathrm{SR}^{\gamma j}_{H}$) that provides the best expected sensitivity is used to estimate the exclusion likelihood. The labels indicate the best-expected signal region for each point, where L and H mean $\mathrm{SR}^{\gamma j}_{L}$ and $\mathrm{SR}^{\gamma j}_{H}$, respectively.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-L}$ for the signal models of the gluino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-H}$ for the signal models of the gluino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-L}$ for the signal models of the squark-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{S-H}$ for the signal models of the squark-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{W-L}$ for the signal models of the wino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma\gamma}_{W-H}$ for the signal models of the wino-bino GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma j}_{L}$ for the signal models of the photon+jets GGM grid.
Acceptance and efficiency for $\mathrm{SR}^{\gamma j}_{H}$ for the signal models of the photon+jets GGM grid.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ selection for one relevant signal point in the gluino-bino model, where the gluinos have mass of 1900 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 300 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ selection for one relevant signal point in the gluino-bino model, where the gluinos have mass of 1900 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 1700 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-L}$ selection for one relevant signal point in the squark-bino model, where the squarks have mass of 1700 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 200 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{S-H}$ selection for one relevant signal point in the squark-bino model, where the squarks have mass of 1700 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 1600 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{W-L}$ selection for one relevant signal point in the wino-bino model, where the winos have mass of 1000 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 200 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma\gamma}_{W-H}$ selection for one relevant signal point in the wino-bino model, where the winos have mass of 1000 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 800 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma j}_{L}$ selection, for two relevant signal points in the higgsino-bino model, where the gluinos have mass of 1974 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 442 GeV (10000 generated events), and 652 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow for the $\mathrm{SR}^{\gamma j}_{H}$ selection, for two relevant signal points in the higgsino-bino model, where the gluinos have mass of 1974 GeV and the $\tilde{\chi}^{0}_{1}$ has a mass of 1868 GeV (10000 generated events), and 1920 GeV (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
This paper presents a first measurement of the cross-section for the charged-current Drell-Yan process $pp\rightarrow W^{\pm} \rightarrow \ell^{\pm} ν$ above the resonance region, where $\ell$ is an electron or muon. The measurement is performed for transverse masses, $m_{\text{T}}^{\text{W}}$, between 200 GeV and 5000 GeV, using a sample of 140 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected by the ATLAS detector at the LHC during 2015-2018. The data are presented single differentially in transverse mass and double differentially in transverse mass and absolute lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations from the Standard Model. The electron and muon channel measurements are combined to achieve a total experimental precision of 3% at low $m_{\text{T}}^{\text{W}}$. The single- and double differential $W$-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-next-to-leading-order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading-order electroweak effects indicates the potential of the data to constrain parton distribution functions. The data are also used to constrain four fermion operators in the Standard Model Effective Field Theory formalism, in particular the lepton-quark operator Wilson coefficient $c_{\ell q}^{(3)}.$
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.