Showing 10 of 1289 results
A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.
Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.
Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$.
Measured cross section as a function of the transverse momenum of the first jet, $p_{\text{T}}(\text{j}_1)$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the transverse momenum of the first jet, $p_{\text{T}}(\text{j}_1)$.
Measured cross section as a function of the rapidity absolute value of the second jet, $|y(\text{j}_2)|$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the rapidity absolute value of the second jet, $|y(\text{j}_2)|$.
Measured cross section as a function of the transverse momenum of the second jet, $p_{\text{T}}(\text{j}_2)$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the transverse momenum of the second jet, $p_{\text{T}}(\text{j}_2)$.
Measured cross section as a function of the rapidity absolute value of the third jet, $|y(\text{j}_3)|$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the rapidity absolute value of the third jet, $|y(\text{j}_3)|$.
Measured cross section as a function of the transverse momenum of the third jet, $p_{\text{T}}(\text{j}_3)$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the transverse momenum of the third jet, $p_{\text{T}}(\text{j}_3)$.
Measured cross section as a function of the $H_{\text{T}}$ observable for events with at least one jet and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the $H_{\text{T}}$ observable for events with at least one jet.
Measured cross section as a function of the $H_{\text{T}}$ observable for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the $H_{\text{T}}$ observable for events with at least two jets.
Measured cross section as a function of the $H_{\text{T}}$ observable for events with at least three jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the $H_{\text{T}}$ observable for events with at least three jets.
Measured differential cross section as a function of dijet mass, $M_{\text{j}_1\text{j}_2}$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of dijet mass, $M_{\text{j}_1\text{j}_2}$, for events with at least two jets.
Measured differential cross section as a function of Z boson rapidity absolute value, $|y(\text{Z})|$ for events with at least one jet and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of Z boson rapidity absolute value, $|y(\text{Z})|$ for events with at least one jet.
Measured differential cross section as a function of the leading and subleading jet rapidity difference, $y_{\text{diff}}(\text{j}_1,\text{j}_2)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the leading and subleading jet rapidity difference, $y_{\text{diff}}(\text{j}_1,\text{j}_2)$, for events with at least two jets.
Measured differential cross section as a function of the leading and subleading jet rapidity sum, $y_{\text{sum}}(\text{j}_1,\text{j}_2)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the leading and subleading jet rapidity sum, $y_{\text{sum}}(\text{j}_1,\text{j}_2)$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and leading jet rapidity difference, $y_{\text{diff}}(\text{Z},\text{j}_1)$, for events with at least one jet and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and leading jet rapidity difference, $y_{\text{diff}}(\text{Z},\text{j}_1)$, for events with at least one jet.
Measured differential cross section as a function of the Z boson and leading jet rapidity sum, $y_{\text{sum}}(\text{Z},\text{j}_1)$, for events with at least one jet and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and leading jet rapidity sum, $y_{\text{sum}}(\text{Z},\text{j}_1)$, for events with at least one jet.
Measured differential cross section as a function of the Z boson and leading jet rapidity difference, $y_{\text{diff}}(\text{Z},\text{j}_1)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and leading jet rapidity difference, $y_{\text{diff}}(\text{Z},\text{j}_1)$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and leading jet rapidity sum, $y_{\text{sum}}(\text{Z},\text{j}_1)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and leading jet rapidity sum, $y_{\text{sum}}(\text{Z},\text{j}_1)$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and subleading jet rapidity difference, $y_{\text{diff}}(\text{Z},\text{j}_2)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and subleading jet rapidity difference, $y_{\text{diff}}(\text{Z},\text{j}_2)$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and subleading jet rapidity sum, $y_{\text{sum}}(\text{Z},\text{j}_2)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and subleading jet rapidity sum, $y_{\text{sum}}(\text{Z},\text{j}_2)$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and dijet rapidity difference, $y_{\text{diff}}(\text{Z},\text{dijet})$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and dijet rapidity difference, $y_{\text{diff}}(\text{Z},\text{dijet})$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and dijet rapidity sum, $y_{\text{sum}}(\text{Z},\text{dijet})$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and dijet rapidity sum, $y_{\text{sum}}(\text{Z},\text{dijet})$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and leading jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_1)$, for events with at least one jet and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and leading jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_1)$, for events with at least one jet.
Measured differential cross section as a function of the Z boson and leading jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_1)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and leading jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_1)$, for events with at least two jets.
Measured differential cross section as a function of the Z boson and leading jet azimuthal difference for events, $\Delta\phi(\text{Z},\text{j}_1)$, with at least three jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and leading jet azimuthal difference for events, $\Delta\phi(\text{Z},\text{j}_1)$, with at least three jets.
Measured differential cross section as a function of the Z boson and subleading jet azimuthal difference for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and subleading jet azimuthal difference for events with at least two jets.
Measured differential cross section as a function of the Z boson and subleading jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_2)$, for events with at least three jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and subleading jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_2)$, for events with at least three jets.
Measured differential cross section as a function of the Z boson and third jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_3)$, for events with at least three jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the Z boson and third jet azimuthal difference, $\Delta\phi(\text{Z},\text{j}_3)$, for events with at least three jets.
Measured differential cross section as a function of the leading and subleading jet azimuthal difference, $\Delta\phi(\text{j}_1,\text{j}_2)$, for events with at least two jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the leading and subleading jet azimuthal difference, $\Delta\phi(\text{j}_1,\text{j}_2)$, for events with at least two jets.
Measured differential cross section as a function of the leading and subleading jet azimuthal difference, $\Delta\phi(\text{j}_1,\text{j}_2)$, for events with at least three jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the leading and subleading jet azimuthal difference, $\Delta\phi(\text{j}_1,\text{j}_2)$, for events with at least three jets.
Measured differential cross section as a function of the leading and third jet azimuthal difference, $\Delta\phi(\text{j}_1,\text{j}_3)$, for events with at least three jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the leading and third jet azimuthal difference, $\Delta\phi(\text{j}_1,\text{j}_3)$, for events with at least three jets.
Measured differential cross section as a function of the subleading and third jet azimuthal difference, $\Delta\phi(\text{j}_2,\text{j}_3)$, for events with at least three jets and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured differential cross section as a function of the subleading and third jet azimuthal difference, $\Delta\phi(\text{j}_2,\text{j}_3)$, for events with at least three jets.
Measured cross section as a function of the leading jet transverse momentum, $p_{\text{T}}(\text{j}_1)$, and rapidity absolute value, $|y(\text{j}_1)|$ for events with at least one jet and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the leading jet transverse momentum, $p_{\text{T}}(\text{j}_1)$, and rapidity absolute value, $|y(\text{j}_1)|$ for events with at least one jet.
Measured cross section as a function of the leading jet and Z boson rapidity abosolute values, $|y(\text{j}_1|$ and $|y(\text(Z))|$, for events with at least one jet with $p_\text{T}>20\,\text{Gev}$ and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the leading jet and Z boson rapidity abosolute values, $|y(\text{j}_1|$ and $|y(\text(Z))|$, for events with at least one jet with $p_\text{T}>20\,\text{Gev}$.
Measured cross section as a function of the transverse momementum, $p_{\text{T}}(\text{Z})$, and rapidity, $y(\text{Z})$, of the Z boson, for events with at least one jet with $p_\text{T}>20\,\text{Gev}$ and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of the transverse momementum, $p_{\text{T}}(\text{Z})$, and rapidity, $y(\text{Z})$, of the Z boson, for events with at least one jet with $p_\text{T}>20\,\text{Gev}$.
Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Systematic uncertainties for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with leptons at the Born-level to the cross section calculated with dressed leptons as a function of the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Correction scale factor from the cross section calculated with an overlap removal with jets of pT greater than 100 GeV to the cross section calculated with an overlap removal with jets of pT greater than 30 GeV as a function of the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, averaging the electron and muon channels, derived with Sherpa2.2.11. The systematic uncertainty is obtained with an enveloppe around scale factors computed from Sherpa2.2.1 and MG5_aMC+Py8 CKKWL.
Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The statistical, systematic, and luminosity uncertainties are given.
Systematic uncertainties for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Systematic uncertainties for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events, where the EW Zjj contribution is treated as signal and not subtracted as background. The uncertainties are presented as a percentage of the measured cross-section for the upward variation of each source of uncertainty in each bin.
Results are presented on a search for CP violation in the production and decay of top quark-antiquark pairs in the lepton+jets channel. The search is based on data from proton-proton collisions at 13 TeV, collected with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. Possible CP violation effects are evaluated by measuring uncorrected asymmetries in observables constructed from linearly independent four-momentum vectors of the final-state particles. The dimensionless chromoelectric dipole moment of the top quark obtained from the observed asymmetries is measured to be 0.04 $\pm$ 0.10 (stat) $\pm$ 0.07 (syst), and the asymmetries exhibit no evidence for CP-violating effects, consistent with expectations from the standard model.
Results for the measurement of the effective asymmetries for each observable for the separate electron and muon channels, as well as for the combined lepton+jets channel.
Results for the measurement of the dimensionless CEDM for each observable and the combined lepton+jets channel.
Results for the measurement of the CP-violating asymmetries for each observable for the combined lepton+jets channel.
Results for the covariance matrix where the parameters a, b, c, and d are taken from a linear fit to the different CP-violating samples.
Studies of the correlations of the two highest transverse momentum (leading) jets in individual Pb+Pb collision events can provide information about the mechanism of jet quenching by the hot and dense matter created in such collisions. In Pb+Pb and pp collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV, measurements of the leading dijet transverse momentum ($p_{\mathrm{T}}$) correlations are presented. Additionally, measurements in Pb+Pb collisions of the dijet pair nuclear modification factors projected along leading and subleading jet $p_{\mathrm{T}}$ are made. The measurements are performed using the ATLAS detector at the LHC with 260 pb$^{-1}$ of pp data collected in 2017 and 2.2 nb$^{-1}$ of Pb+Pb data collected in 2015 and 2018. An unfolding procedure is applied to the two-dimensional leading and subleading jet $p_{\mathrm{T}}$ distributions to account for experimental effects in the measurement of both jets. Results are provided for dijets with leading jet $p_{\mathrm{T}}$ greater than 100 GeV. Measurements of the dijet-yield-normalized $x_{\mathrm{J}}$ distributions in Pb+Pb collisions show an increased fraction of imbalanced jets compared to pp collisions; these measurements are in agreement with previous measurements of the same quantity at 2.76 TeV in the overlapping kinematic range. Measurements of the absolutely-normalized dijet rate in Pb+Pb and pp collisions are also presented, and show that balanced dijets are significantly more suppressed than imbalanced dijets in Pb+Pb collisions. It is observed in the measurements of the pair nuclear modification factors that the subleading jets are significantly suppressed relative to leading jets with $p_{\mathrm{T}}$ between 100 and 316 GeV for all centralities in Pb+Pb collisions.
absolutely normalized dijet cross sections from pp collisions
absolutely normalized dijet yields scaled by 1/<TAA> in 0-10% central PbPb collisions
absolutely normalized dijet yields scaled by 1/<TAA> in 10-20% central PbPb collisions
absolutely normalized dijet yields scaled by 1/<TAA> in 20-40% central PbPb collisions
absolutely normalized dijet yields scaled by 1/<TAA> in 40-60% central PbPb collisions
absolutely normalized dijet yields scaled by 1/<TAA> in 60-80% central PbPb collisions
self normalized dijets from pp collisions
self normalized dijet distributions in 0-10% central PbPb collisions
self normalized dijet distributions in 10-20% central PbPb collisions
self normalized dijet distributions in 20-40% central PbPb collisions
self normalized dijet distributions in 40-60% central PbPb collisions
self normalized dijet distributions in 60-80% central PbPb collisions
leading jet RAA^pair in 0-10% central PbPb collisions
subleading jet RAA^pair in 0-10% central PbPb collisions
leading jet RAA^pair in 10-20% central PbPb collisions
subleading jet RAA^pair in 10-20% central PbPb collisions
leading jet RAA^pair in 20-40% central PbPb collisions
subleading jet RAA^pair in 20-40% central PbPb collisions
leading jet RAA^pair in 40-60% central PbPb collisions
subleading jet RAA^pair in 40-60% central PbPb collisions
leading jet RAA^pair in 60-80% central PbPb collisions
subleading jet RAA^pair in 60-80% central PbPb collisions
ratio of subleading jet RAA^pair to leading jet RAA^pair in PbPb collisions
The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, corresponding to an integrated luminosity of 0.38 nb$^{-1}$, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet momenta is found to be positive, and rising, as the dijet momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.
The unfolded 1/${N_{\mathrm{events}}} dN/d\Phi$ distribution
The unfolded $<\cos(2\Phi)>$ distribution as a function of $Q_{\mathrm{T}}$
The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.
The elliptic flow $v_2\{4\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{6\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{8\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{SP\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{4\}$ for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{6\}$ for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{8\}$ for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{SP\}$ for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{4\}$ for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{6\}$ for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{8\}$ for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{SP\}$ for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{4\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{6\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{8\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{p-SP\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{Pb-SP\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{4\}$ for $K_S^0$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{6\}$ for $K_S^0$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{p-SP\}$ for $K_S^0$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{Pb-SP\}$ for $K_S^0$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{4\}$ for $\Lambda$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{6\}$ for $\Lambda$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{p-SP\}$ for $\Lambda$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{Pb-SP\}$ for $\Lambda$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{4,veto\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{6,veto\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The ratio $v_2\{4,veto\}/v_2\{4\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The ratio $v_2\{6,veto\}/v_2\{6\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{4,Sub\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{4,Sub\}$ for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{4,Sub\}$ for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{4,Sub\}$ for $K_S^0$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{4,Sub\}$ for $\Lambda$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The elliptic flow $v_2\{4,Sub\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The ratio $v_2\{4,Sub\}/v_2\{4\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The ratio $v_2\{4,Sub\}/v_2\{4\}$ for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The ratio $v_2\{4,Sub\}/v_2\{4\}$ for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The ratio $v_2\{4,Sub\}/v_2\{4\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The ratio $v_2\{4,Sub\}/v_2\{4\}$ for $K_S^0$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The ratio $v_2\{4,Sub\}/v_2\{4\}$ for $\Lambda$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The flow fluctuation $\sigma/\langle v_{2} \rangle$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The flow fluctuation $\sigma/\langle v_2 \rangle$ for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The flow fluctuation $\sigma/\langle v_2 \rangle$ for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The flow fluctuation $\sigma/\langle v_2 \rangle$ for $K_S^0$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The flow fluctuation $\sigma/\langle v_2 \rangle$ for $\Lambda$ as a function of $p_T$ in pPb collision at 8.16 TeV.
The flow fluctuation $\sigma/\langle v_2 \rangle$ using $v_2\{4\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The flow fluctuation $\sigma/\langle v_2 \rangle$ using $v_2\{6\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The flow fluctuation $\sigma/\langle v_2 \rangle$ using $v_2\{4,veto\}$ for charged hadron as a function of $p_T$ in pPb collision at 8.16 TeV.
The $v_2\{6\}/v_2\{4\}$ ratio for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The $v_2\{6\}/v_2\{4\}$ ratio for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The $v_2\{6\}/v_2\{4\}$ ratio for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The $v_2\{8\}/v_2\{4\}$ ratio for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The $v_2\{8\}/v_2\{4\}$ ratio for $K_S^0$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The $v_2\{8\}/v_2\{4\}$ ratio for $\Lambda$ as a function of $p_T$ in PbPb collision at 5.02 TeV.
The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Pb+Pb 5.02 TeV
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Xe+Xe 5.44 TeV
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
The first measurements of the Fourier coefficients ($V_{n\Delta}$) of the azimuthal distributions of charged hadrons emitted from photon-proton ($\gamma$p) interactions at the LHC are presented. The data are extracted from 68.8 nb$^{-1}$ of ultra-peripheral proton-lead (pPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV using the CMS detector. The high energy lead ions produce a flux of photons that can interact with the oncoming proton. This $\gamma$p system provides a set of unique initial conditions with multiplicity lower than in photon-lead collisions but comparable to recent electron-positron and electron-proton data. The $V_{n\Delta}$ coefficients are presented in ranges of event multiplicity and transverse momentum ($p_\mathrm{T}$) and are compared to corresponding hadronic minimum bias pPb results. For a given multiplicity range, the mean $p_\mathrm{T}$ of charged particles is smaller in $\gamma$p than in pPb collisions. For both the $\gamma$p and pPb samples, $V_{1\Delta}$ is negative, $V_{2\Delta}$ is positive, and $V_{3\Delta}$ consistent with 0. For each multiplicity and $p_\mathrm{T}$ range, $V_{2\Delta}$ is larger for $\gamma$p events. The $\gamma$p data are consistent with model predictions that have no collective effects.
$V_{n\Delta}$ coefficients for $\gamma$p events as a function of N$_{\text{trk}}$ for $ 0.3 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
$V_{n\Delta}$ coefficients for minimum bias events as a function of N$_{\text{trk}}$ for $ 0.3 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
$V_{n\Delta}$ coefficients for $\gamma$p events as a function of N$_{\text{trk}}$ for $ 1.0 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
$V_{n\Delta}$ coefficients for minimum bias events as a function of N$_{\text{trk}}$ for $ 1.0 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
Single-particle azimuthal anisotropy $v_2$ for $\gamma$p events as a function of N$_{\text{trk}}$ for $0.3 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
Single-particle azimuthal anisotropy $v_2$ for minimum bias events as a function of N$_{\text{trk}}$ for $0.3 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
Single-particle azimuthal anisotropy $v_2$ for $\gamma$p events as a function of N$_{\text{trk}}$ for $1.0 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
Single-particle azimuthal anisotropy $v_2$ for minimum bias events as a function of N$_{\text{trk}}$ for $1.0 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.
A search is reported for pairs of light Higgs bosons (H$_1$) produced in supersymmetric cascade decays in final states with small missing transverse momentum. A data set of LHC pp collisions collected with the CMS detector at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$ is used. The search targets events where both H$_1$ bosons decay into $\mathrm{b\bar{b}}$ pairs that are reconstructed as large-radius jets using substructure techniques. No evidence is found for an excess of events beyond the background expectations of the standard model (SM). Results from the search are interpreted in the next-to-minimal supersymmetric extension of the SM, where a "singlino" of small mass leads to squark and gluino cascade decays that can predominantly end in a highly Lorentz-boosted singlet-like H$_1$ and a singlino-like neutralino of small transverse momentum. Upper limits are set on the product of the squark or gluino pair production cross section and the square of the $\mathrm{b\bar{b}}$ branching fraction of the H$_1$ in a benchmark model containing almost mass-degenerate gluinos and light-flavour squarks. Under the assumption of an SM-like H$_1$$\to$$\mathrm{b\bar{b}}$ branching fraction, H$_1$ bosons with masses in the range 40-120 GeV arising from the decays of squarks or gluinos with a mass of 1200 to 2500 GeV are excluded at 95% confidence level.
Reference acceptance times efficiency values for the kinematic selection and $H_T>3500\;\mathrm{GeV}$ requirements ($A_{\mathrm{kin}}$) for the benchmark signal model with different values of $m_{\mathrm{SUSY}}$. These values are independent of $m_{\mathrm{H_1}}$ within 2% in the range $30 \le m_{\mathrm{H_1}} \le 125\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b}) \times A_{\mathrm{kin}}$ as a function of $m_{\mathrm{H_1}}$. The results are independent of $m_{\mathrm{SUSY}}$ within 10% in the range $1600<m_{\mathrm{SUSY}}<2800\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b})$ as a function of $m_{\mathrm{H_1}}$ for $m_{\mathrm{SUSY}}=1200\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b})$ as a function of $m_{\mathrm{H_1}}$ for $m_{\mathrm{SUSY}}=1600\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b})$ as a function of $m_{\mathrm{H_1}}$ for $m_{\mathrm{SUSY}}=2000\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b})$ as a function of $m_{\mathrm{H_1}}$ for $m_{\mathrm{SUSY}}=2200\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b})$ as a function of $m_{\mathrm{H_1}}$ for $m_{\mathrm{SUSY}}=2400\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b})$ as a function of $m_{\mathrm{H_1}}$ for $m_{\mathrm{SUSY}}=2600\;\mathrm{GeV}$.
Upper limits at 95% CL on $\sigma\times\mathcal{B}^2(\mathrm{H}_1\rightarrow b\bar{b})$ as a function of $m_{\mathrm{H_1}}$ for $m_{\mathrm{SUSY}}=2800\;\mathrm{GeV}$.
Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>EWK SR distributions:</b> <a href="116034?version=1&table=Figure 11a">SR-High_8-EWK</a>; <a href="116034?version=1&table=Figure 11b">SR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 11c">SR-Int-EWK</a>; <a href="116034?version=1&table=Figure 11d">SR-Low-EWK</a>; <a href="116034?version=1&table=Figure 11e">SR-OffShell-EWK</a><br/><br/> <b>Strong SR distributions:</b> <a href="116034?version=1&table=Figure 13a">SRC-STR</a>; <a href="116034?version=1&table=Figure 13b">SRLow-STR</a>; <a href="116034?version=1&table=Figure 13c">SRMed-STR</a>; <a href="116034?version=1&table=Figure 13d">SRHigh-STR</a><br/><br/> <b>RJR SR Yields:</b> <a href="116034?version=1&table=Table 16">SR2l-Low-RJR, SR2l-ISR-RJR</a><br/><br/> <b>EWK SR Yields:</b> <a href="116034?version=1&table=Table 18">SR-High_16a-EWK, SR-High_8a-EWK, SR-1J-High-EWK, SR-ℓℓ𝑏𝑏-EWK, SR-High_16b-EWK, SR-High_8b-EWK</a>; <a href="116034?version=1&table=Table 19">SR-Int_a-EWK, SR-Low_a-EWK, SR-Low-2-EWK, SR-OffShell_a-EWK, SR-Int_b-EWK, SR-Low_b-EWK, SR-OffShell_b-EWK </a><br/><br/> <b>Strong SR Yields:</b> <a href="116034?version=1&table=Table 21">SRC-STR, SRLow-STR, SRMed-STR, SRHigh-STR</a>; <a href="116034?version=1&table=Table 22">SRZLow-STR, SRZMed-STR, SRZHigh-STR</a><br/><br/> <b>C1N2 Model Limits:</b> <a href="116034?version=1&table=Table 15a C1N2 Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15a C1N2 Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34a C1N2 Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>GMSB Model Limits:</b> <a href="116034?version=1&table=Table 15b GMSB Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15b GMSB Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34b GMSB Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Slepton Model Limits:</b> <a href="116034?version=1&table=Figure 16a Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16a Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23a XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16b Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16b Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23b XS Upper Limit">Upper Limits</a><br/><br/> <b>Squark-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16c Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16c Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23c XS Upper Limit">Upper Limits</a><br/><br/> <b>EWK VR distributions:</b> <a href="116034?version=1&table=Figure 4a S_ETmiss in VR-High-Sideband-EWK">VR-High-Sideband-EWK</a>; <a href="116034?version=1&table=Figure 4b S_Etmiss in VR-High-R-EWK">VR-High-R-EWK</a>; <a href="116034?version=1&table=Figure 4c S_Etmiss in VR-1J-High-EWK">VR-1J-High-EWK</a>; <a href="116034?version=1&table=Figure 4d S_Etmiss in VR-llbb-EWK">VR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 5a S_Etmiss in VR-Int-EWK">VR-Int-EWK</a>; <a href="116034?version=1&table=Figure 5b S_Etmiss in VR-Low-EWK">VR-Low-EWK</a>; <a href="116034?version=1&table=Figure 5c S_Etmiss in VR-Low-2-EWK">VR-Low-2-EWK</a>; <a href="116034?version=1&table=Figure 5d S_Etmiss in VR-OffShell-EWK">VR-OffShell-EWK</a><br/><br/> <b>Strong VR distributions:</b> <a href="116034?version=1&table=Figure 6a">VRC-STR</a>; <a href="116034?version=1&table=Figure 6b">VRLow-STR</a>; <a href="116034?version=1&table=Figure 6c">VRMed-STR</a>; <a href="116034?version=1&table=Figure 6d">VRHigh-STR</a>; <a href="116034?version=1&table=Figure 8">VR3L-STR</a><br/><br/> <b>Other Strong distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 17a">SRLow-STR + VRLow-STR</a><br/><br/> <b>Other EWK distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 33a Mjj in CR-Z-EWK and SR-Low-EWK">CR-Z-EWK + SR-Low-EWK</a>; <a href="116034?version=1&table=Auxiliary Figure 33b S_ETmiss in CR-Z-met-EWK">CR-Z-met-EWK</a><br/><br/> <b>Strong Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 30-31 SRC-STR Cutflow">SRC-STR GG_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRMed-STR Cutflow">SRC-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRLow-STR Cutflow">SRLow-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRHigh-STR Cutflow">SRC-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZLow-STR Cutflow">SRZLow-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZMed-STR Cutflow">SRZMed-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZHigh-STR Cutflow">SRZHigh-STR SS_N2_ZN1</a><br/><br/> <b>EWK Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Cutflow"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Cutflow"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Cutflow"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Cutflow"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Cutflow"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Cutflow"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Cutflow"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Cutflow"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Cutflow"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Cutflow"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Cutflow"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Cutflow"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Cutflow"> SR-llbb-EWK</a><br/><br/> <b>EWK Signal Number of MC Events:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Generated"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Generated"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Generated"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Generated"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Generated"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Generated"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Generated"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Generated"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Generated"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Generated"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Generated"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Generated"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Generated"> SR-llbb-EWK</a><br/><br/> <b>SRC-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SRC-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SR-OffShell_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in C1N2 acc in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in C1N2 acc in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in C1N2 eff in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in C1N2 eff in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>Truth Code snippets</b>, <b>SLHA files</b>, and <b>PYHF json likelihoods</b> are available under "Resources" (purple button on the left) ---- Record created with hepdata_lib 0.7.0: https://zenodo.org/record/4946277 and PYHF: https://doi.org/10.5281/zenodo.1169739
Breakdown of expected and observed yields in the two recursive-jigsaw reconstruction signal regions after a simultaneous fit of the the CRs. The two sets of regions are fit separately. The uncertainties include both statistical and systematic sources.
Breakdown of expected and observed yields in the electroweak search High and $\ell\ell bb$ signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the electroweak search Int, Low, and OffShell signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the four edge signal regions, integrated over the $m_{\ell\ell}$ distribution after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Breakdown of expected and observed yields in the three on-$Z$ signal regions after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected dilepton mass distributions in VR3L-STR without a fit to the data. The 'Other' category includes the negligible contributions from $t\bar{t}$ and $Z/\gamma^*$+jets processes. The hatched band contains the statistical uncertainty and the theoretical systematic uncertainties of the $WZ$/$ZZ$ prediction, which are the dominant sources of uncertainty. No fit is performed. The last bin contains the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95\% CLs upper limit on the cross section.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95$\%$ CLs upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
The combined $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution of VRLow-STR and SRLow-STR (left), and the same region with the $\Delta\phi(\boldsymbol{j}_{1,2},\boldsymbol{\mathit{p}}_{ ext{T}}^{ ext{miss}})<0.4$ requirement, used as a control region to normalize the $Z/\gamma^*+\mathrm{jets}$ process (right). Separate fits for the SR and VR are performed, as for the results in the paper, and the resulting distributions are merged. All statistical and systematic uncertainties are included in the hatched bands. The last bins contain the overflow.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.