Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV with the STAR detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, Jaroslav ; et al.
JHEP 06 (2023) 176, 2023.
Inspire Record 2641480 DOI 10.17182/hepdata.139080

We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity ($|y|<$ 0.7) in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Invariant yields of HFEs are measured for the transverse momentum range of $3.5 < p_{\rm T} < 9$ GeV/$c$ in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in $p$+$p$ collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.

6 data tables

Ratios of NPE (non-photonic electron) to PHE (photonic electron) as a function of $p_{\rm T}$ in 0-10% central (yellow circles) and 40-80% peripheral (green squares) Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Vertical bars represent statistical uncertainties while boxes represent systematic uncertainties. Horizontal bars indicate the bin width.

Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 0-10% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.

Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 40-80% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.

More…

Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

19 data tables

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

More…

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

53 data tables

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

Beam Energy Dependence of Triton Production and Yield Ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$) in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 130 (2023) 202301, 2023.
Inspire Record 2152917 DOI 10.17182/hepdata.133992

We report the triton ($t$) production in mid-rapidity ($|y| <$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity ($dN_{ch}/d\eta$) and follows a scaling behavior. The $dN_{ch}/d\eta$ dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0%-10% most central collisions at 19.6 and 27 GeV, with a significance of 2.3$\sigma$ and 3.4$\sigma$, respectively, giving a combined significance of 4.1$\sigma$. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller $p_{T}$ acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed.

68 data tables

Invariant yields of tritons at 7.7 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.

Invariant yields of tritons at 11.5 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.

Invariant yields of tritons at 14.5 GeV, all centralities. The first uncertainty is statistical uncertainty, the second is systematic uncertainty.

More…

Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 106 (2022) 072010, 2022.
Inspire Record 2087127 DOI 10.17182/hepdata.130778

The STAR Collaboration reports measurements of the transverse single-spin asymmetries, $A_N$, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include $A_N$ for inclusive jets and $A_N$ for jets containing a charged pion carrying a momentum fraction $z>0.3$ of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum $p_{T}$ and pseudorapidity $\eta$, as well as the hadron momentum fraction $z$ and momentum transverse to the jet axis $j_{T}$. These results probe higher momentum scales ($Q^{2}$ up to $\sim$ 900 GeV$^{2}$) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.

127 data tables

Distribution of the normalized jet yield as a function of detector jet-$p_{T}$ in 2015 data and simulation. The lower panel shows the ratio between data and simulation.

Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron longitudinal momentum fraction, $z$, in two different ranges of jet-$p_{T}$.

Comparison of data with simulation for charged hadrons within jets in the 2015 data as a function of the hadron momentum transverse to the jet axis, $j_{T}$, in two different ranges of jet-$p_{T}$.

More…

Two-particle correlations on transverse rapidity in Au+Au collisions at $\sqrt {s_{NN}}=200$ GeV at STAR

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 106 (2022) 044906, 2022.
Inspire Record 2071694 DOI 10.17182/hepdata.129290

Two-particle correlation measurements projected onto two-dimensional, transverse rapidity coordinates ($y_{T1},y_{T2}$), allow access to dynamical properties of the QCD medium produced in relativistic heavy-ion collisions that angular correlation measurements are not sensitive to. We report non-identified charged-particle correlations for Au + Au minimum-bias collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV taken by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Correlations are presented as 2D functions of transverse rapidity for like-sign, unlike-sign and all charged-particle pairs, as well as for particle pairs whose relative azimuthal angles lie on the near-side, the away-side, or at all relative azimuth. The correlations are constructed using charged particles with transverse momentum $p_T \geq 0.15$ GeV/$c$, pseudorapidity from $-$1 to 1, and azimuthal angles from $-\pi$ to $\pi$. The significant correlation structures that are observed evolve smoothly with collision centrality. The major correlation features include a saddle shape plus a broad peak with maximum near $y_T \approx 3$, corresponding to $p_T \approx$ 1.5 GeV/$c$. The broad peak is observed in both like- and unlike-sign charge combinations and in near- and away-side relative azimuthal angles. The all-charge, all-azimuth correlation measurements are compared with the theoretical predictions of {\sc hijing} and {\sc epos}. The results indicate that the correlations for peripheral to mid-central collisions can be approximately described as a superposition of nucleon + nucleon collisions with minimal effects from the QCD medium. Strong medium effects are indicated in mid- to most-central collisions.

137 data tables

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 84-93%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 74-84%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 64-74%.

More…

Version 2
Centrality and transverse momentum dependence of higher-order flow harmonics of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 064911, 2022.
Inspire Record 2051708 DOI 10.17182/hepdata.128148

We present high-precision measurements of elliptic, triangular, and quadrangular flow $v_{2}$, $v_{3}$, and $v_{4}$, respectively, at midrapidity ($|\eta|<1.0$) for identified hadrons $\pi$, $p$, $K$, $\varphi$, $K_s$, $\Lambda$ as a function of centrality and transverse momentum in Au+Au collisions at the center-of-mass energy $\sqrt{s_{\rm NN}}=$ 200 GeV. We observe similar $v_{n}$ trends between light and strange mesons which indicates that the heavier strange quarks flow as strongly as the lighter up and down quarks. The number-of-constituent-quark scaling for $v_{2}$, $v_{3}$, and $v_{4}$ is found to hold within statistical uncertainty for 0-10$\%$, 10-40$\%$ and 40-80$\%$ collision centrality intervals. The results are compared to several viscous hydrodynamic calculations with varying initial conditions, and could serve as an additional constraint to the development of hydrodynamic models.

94 data tables

The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.

The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.

The transverse momentum dependence of elliptic, triangular and quadrangular flow of particles, antiparticles and their difference for 0-80 central Au+Au collisions.

More…

Collision-system and beam-energy dependence of anisotropic flow fluctuations

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 129 (2022) 252301, 2022.
Inspire Record 2017211 DOI 10.17182/hepdata.116554

Elliptic flow measurements from two-, four- and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at $\sqrt{s_{\rm NN}}$= 193 GeV, Cu+Au at $\sqrt{s_{\rm NN}}$= 200 GeV and Au+Au spanning the range $\sqrt{s_{\rm NN}}$= 11.5 - 200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and T$\mathrel{\protect\raisebox{-2.1pt}{R}}$ENTo model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.

11 data tables

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the $\pi$ particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the K particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the p particle.

More…

Measurement of inclusive electrons from open heavy-flavor hadron decays in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV with the STAR detector

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 105 (2022) 032007, 2022.
Inspire Record 1928900 DOI 10.17182/hepdata.113876

We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum ($p_{\rm T}$) at mid-rapidity ($|y|<$ 0.7) in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV. The result is presented for 2.5 $<p_{\rm T}<$ 10 GeV/$c$ with an improved precision above 6 GeV/$c$ with respect to the previous measurements, providing more constraints on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.

4 data tables

Signal-to-background ratio as a function of $p_{T}$, where the signals are non-photonic electrons [$N_{\rm INE}\times P_{\rm e} - N_{\rm PHE}/\varepsilon_{PHE}$ in Eq.$1$ shown in paper text] and the backgrounds are photonic electrons [$N_{\rm PHE}/\varepsilon_{PHE}$ in Eq.$1$], in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The vertical bars represent statistical uncertainties while the boxes represent systematic uncertainties.

Invariant cross sections of the electrons from decays of prompt $J/\Psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contributions (solid line) in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The bands represent systematic uncertainties.

(a) The NPE (non-photonic electron) cross section after subtracting the light vector meson contribution at STAR in $p$+$p$ collisions at $\sqrt{s}=200$ GeV from $2012$ (filled circles) along with published STAR data from $2005$ and $2008$ (filled down triangles), published PHENIX data from $2005$ (filled up triangles) and power-law fit (curve). (b) Ratio of data over power-law fit. The vertical bars and the boxes represent statistical and systematic uncertainties, respectively.

More…

Probing the gluonic structure of the deuteron with $J/\psi$ photoproduction in d+Au ultra-peripheral collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 122303, 2022.
Inspire Record 1922652 DOI 10.17182/hepdata.113508

Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of $J/\psi$ photoproduction off the deuteron in UPCs at the center-of-mass energy $\sqrt{s_{_{\rm NN}}}=200~\rm GeV$ in d$+$Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.

1 data table

Upper - differential cross section as a function of $p^{2}_{T, J/\psi}$ of \jpsi photoproduction in UPCs at $\sqrt{s_{_{\rm NN}}}=200\rm~GeV$. Data for the total diffractive process are shown with solid markers, while data with neutron tagging in the deuteron-going ZDC are shown with open markers. Theoretical predictions based on the saturation model (Color Glass Condensate)[Phys.Rev.C 101 (2020) 1, 015203] and the gluon shadowing model (LTA) [V. Guzey, M. Strikman, E. Kryshen, M. Zhalov] are compared with data, shown as solid lines. Statistical uncertainty is represented by the error bars, and the systematic uncertainty is denoted by the shaded box. For the lower, ratios of total data and models are presented as a function of $-t \approx p^{2}_{T, J/\psi}$. Color bands are statistical uncertainty based on the data only, while systematic uncertainty is indicated by the gray box.


Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

225 data tables

fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.

More…

Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at $\sqrt{s_{NN}}=$ 27, 54.4, and 200 GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 127 (2021) 262301, 2021.
Inspire Record 1866196 DOI 10.17182/hepdata.105720

According to first-principle lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region μB ≤ T c. In this range the ratio, C6=C2, of net-baryon distributions are predicted to be negative. In this Letter, we report the first measurement of the midrapidity net-proton C6=C2 from 27, 54.4, and 200 GeV Au þ Au collisions at the Relativistic Heavy Ion Collider (RHIC). The dependence on collision centrality and kinematic acceptance in (p T , y) are analyzed. While for 27 and 54.4 GeV collisions the C6=C2 values are close to zero within uncertainties, it is observed that for 200 GeV collisions, the C6=C2 ratio becomes progressively negative from peripheral to central collisions. Transport model calculations without critical dynamics predict mostly positive values except for the most central collisions within uncertainties. These observations seem to favor a smooth crossover in the high-energy nuclear collisions at top RHIC energy.

51 data tables

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

More…

Version 2
Invariant Jet Mass Measurements in $pp$ Collisions at $\sqrt{s} = 200$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.D 104 (2021) 052007, 2021.
Inspire Record 1853218 DOI 10.17182/hepdata.102953

We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at $\sqrt{s}=200$ GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.

44 data tables

The uncorrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$.

The uncorrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.

The uncorrected SoftDrop groomed jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$.

More…

Azimuthal anisotropy measurements of strange and multi-strange hadrons in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 103 (2021) 064907, 2021.
Inspire Record 1852040 DOI 10.17182/hepdata.102643

We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.

137 data tables

Event plane resolution as a function of centrality for $\psi_{2}$, $\psi_{3}$, and $\psi_{4}$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The statistical uncertainties are smaller than the markers.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

More…

Cumulants and Correlation Functions of Net-proton, Proton and Antiproton Multiplicity Distributions in Au+Au Collisions at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 104 (2021) 024902, 2021.
Inspire Record 1843941 DOI 10.17182/hepdata.101356

We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $\kappa_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $\kappa_n$ are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, $y$, and transverse momentum, $p_{T}$. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity ($|y| <$ 0.5) and transverse momentum 0.4 $<$$p_{\rm T}$$<$ 2.0 GeV/$c$, using the STAR detector at RHIC. We observe a non-monotonic energy dependence ($\sqrt{s_{\mathrm {NN}}}$ = 7.7 -- 62.4 GeV) of the net-proton $C_{4}$/$C_{2}$ with the significance of 3.1$\sigma$ for the 0-5% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with $\sqrt{s_{\mathrm {NN}}}$. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, $\kappa_2$, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, $\kappa_4$, of protons plays a role in determining the energy dependence of proton $C_4/C_1$ below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.

114 data tables

Reference charged particle multiplicity distributions using only pions and kaons ...

Reference charged particle multiplicity distributions using only pions and kaons ...

Reference charged particle multiplicity distributions using only pions and kaons ...

More…

Measurement of transverse single-spin asymmetries of $\pi^0$ and electromagnetic jets at forward rapidity in 200 and 500 GeV transversely polarized proton-proton collisions

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 103 (2021) 092009, 2021.
Inspire Record 1837609 DOI 10.17182/hepdata.100194

The STAR Collaboration reports measurements of the transverse single-spin asymmetry (TSSA) of inclusive $\pi^0$ at center-of-mass energies ($\sqrt s$) of 200 GeV and 500 GeV in transversely polarized proton-proton collisions in the pseudo-rapidity region 2.7 to 4.0. The results at the two different energies show a continuous increase of the TSSA with Feynman-$x$, and, when compared to previous measurements, no dependence on $\sqrt s$ from 19.4 GeV to 500 GeV is found. To investigate the underlying physics leading to this large TSSA, different topologies have been studied. $\pi^0$ with no nearby particles tend to have a higher TSSA than inclusive $\pi^0$. The TSSA for inclusive electromagnetic jets, sensitive to the Sivers effect in the initial state, is substantially smaller, but shows the same behavior as the inclusive $\pi^0$ asymmetry as a function of Feynman-$x$. To investigate final-state effects, the Collins asymmetry of $\pi^0$ inside electromagnetic jets has been measured. The Collins asymmetry is analyzed for its dependence on the $\pi^0$ momentum transverse to the jet thrust axis and its dependence on the fraction of jet energy carried by the $\pi^0$. The asymmetry was found to be small in each case for both center-of-mass energies. All the measurements are compared to QCD-based theoretical calculations for transverse-momentum-dependent parton distribution functions and fragmentation functions. Some discrepancies are found, which indicates new mechanisms might be involved.

34 data tables

Transverse single-spin asymmetry as a function of Feynman-x for \pi^0 production in transversely polarized proton-proton collisions at 200 GeV.

Transverse single-spin asymmetry as a function of Feynman-x for \pi^0 production in transversely polarized proton-proton collisions at 500 GeV.

average transverse momentum of the \pi^0 for each xF bin in transversely polarized proton-proton collisions at 200 GeV.

More…

Measurements of $W$ and $Z/\gamma^*$ cross sections and their ratios in $p+p$ collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 103 (2021) 012001, 2021.
Inspire Record 1829350 DOI 10.17182/hepdata.99055

We report on the $W$ and $Z/\gamma^*$ differential and total cross sections as well as the $W^+$/$W^-$ and $(W^+ + W^-)$/$(Z/\gamma^*)$ cross-section ratios measured by the STAR experiment at RHIC in $p+p$ collisions at $\sqrt{s} = 500$ GeV and $510$ GeV. The cross sections and their ratios are sensitive to quark and antiquark parton distribution functions. In particular, at leading order, the $W$ cross-section ratio is sensitive to the $\bar{d}/\bar{u}$ ratio. These measurements were taken at high $Q^2 \sim M_W^2,M_Z^2$ and can serve as input into global analyses to provide constraints on the sea quark distributions. The results presented here combine three STAR data sets from 2011, 2012, and 2013, accumulating an integrated luminosity of 350 pb$^{-1}$. We also assess the expected impact that our $W^+/W^-$ cross-section ratios will have on various quark distributions, and find sensitivity to the $\bar{u}-\bar{d}$ and $\bar{d}/\bar{u}$ distributions.

7 data tables

Differential cross sections, $d\sigma^{fid}_{W^+}/d\eta_{e^+}$, binned in $e^+$ pseudorapidity bins, requiring that $-1 < \eta_e < 1.5$ and $25$ GeV $< E^e_{T} < 50$ GeV. The values labeled 'stat.' and 'eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 5\% uncertainty in the tracking efficiency, which is common to all the measurements. The value 'sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

Differential cross sections, $d\sigma^{fid}_{W^-}/d\eta_{e^-}$, binned in $e^-$ pseudorapidity bins, requiring that $-1 < \eta_e < 1.5$ and $25$ GeV $< E^e_{T} < 50$ GeV. The values labeled ``stat.' and ``eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 5\% uncertainty in the tracking efficiency, which is common to all the measurements. The value ``sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

Differential cross sections, $d\sigma^{fid}_{Z}/dy_Z$, binned in rapidity bins, requiring that $|\eta_e|<1$, $|y_Z| < 1$, $p^e_T > 15$ GeV, and $ 70$ GeV $< M_Z < 110$ GeV. The values labeled 'stat.' and 'eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 10\% uncertainty in the tracking efficiency, which is common to all the measurements. The value 'sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

More…

Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

12 data tables

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in peripheral (60-80%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 7 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

More…

Production of light-flavor hadrons in pp collisions at $\sqrt{s}$ = 7 and $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 256, 2021.
Inspire Record 1797443 DOI 10.17182/hepdata.100303

The production of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}^{*}(892)^{0}$, $\rm{p}$, $\phi(1020)$, $\Lambda$, $\Xi^{-}$, $\Omega^{-}$, and their antiparticles was measured in inelastic proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm{T}}$) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $p_{\rm{T}}$ distributions of $\rm{K}^{0}_{S}$, $\Lambda$, and $\overline{\Lambda}$ in inelastic pp collisions at $\sqrt{s}$ = 7 TeV are reported here for the first time. The $p_{\rm{T}}$ distributions are studied at midrapidity within the transverse momentum range $0\leq p_{\rm{T}}\leq20$ GeV/$c$, depending on the particle species. The $p_{\rm{T}}$ spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $\sqrt{s}$ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $p_{\rm{T}}$ with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $x_{\rm{T}}\equiv2p_{\rm{T}}/\sqrt{s}$ scaling properties of hadron production are also studied. As the collision energy increases from $\sqrt{s}$ = 7 to 13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $\sqrt{s}$, while ratios for multi-strange hadrons indicate enhancements. The $p_{\rm{T}}$-differential cross sections of $\pi^{\pm}$, $\rm{K}^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $\pi^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) at high $p_{\rm{T}}$.

47 data tables

Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

Transverse momentum spectrum of $K^{0}_{S}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

More…

Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 808 (2020) 135663, 2020.
Inspire Record 1791591 DOI 10.17182/hepdata.94263

We report results on the total and elastic cross sections in proton-proton collisions at $\sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 \leq -t \leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $d\sigma/dt \sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 \pm 0.09 (stat.)^{\scriptstyle +0.13}_{\scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $\sigma_{tot}$, obtained from extrapolation of the $d\sigma/dt$ to the optical point at $-t = 0$, is $\sigma_{tot} = 54.67 \pm 0.21 (stat.) ^{\scriptstyle +1.28}_{\scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $\sigma_{el} = 10.85 \pm 0.03 (stat.) ^{\scriptstyle +0.49}_{\scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $\sigma^{det}_{el} = 4.05 \pm 0.01 (stat.) ^{\scriptstyle+0.18}_{\scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $\sigma_{inel} = 43.82 \pm 0.21 (stat.) ^{\scriptstyle +1.37}_{\scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.

3 data tables

The proton-proton elastic differential cross-section $d\sigma_{el}/dt$ in the t-range 0.045<|t|<0.135 $GeV^{2}$ at sqrt(s) = 200 GeV.

The B-slope of the exponential fit A*exp(-B*|t|) to the single differential proton-proton elastic cross-section in the t-range 0.045<|t|<0.135 GeV**2 at sqrt(s) = 200 GeV.

The total, elastic and inelastic cross-sections for proton-proton scattering at sqrt(s)=200 GeV, the elastic cross-section measured in the t-range 0.045<|t|<0.135 GeV^2 and the value of the differential cross-section extrapolated to |t| = 0.


Measurement of Groomed Jet Substructure Observables in \pp Collisions at $\sqrt{s} = 200$ GeV with STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 811 (2020) 135846, 2020.
Inspire Record 1783875 DOI 10.17182/hepdata.93789

In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.

39 data tables

The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.

Uncorrected $z_{g}$ for $20 < p_{\rm{T, jet}} < 25$ GeV/c, R=0.4 anti-kT jets

Uncorrected $R_{g}$ for $20 < p_{\rm{T, jet}} < 25$ GeV/c, R=0.4 anti-kT jets

More…

Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

35 data tables

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 19.6 GeV. Values are shown with NBD, Poisson and UrQMD predictions. Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 27 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 39 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

More…

Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

6 data tables

Average charged particle multiplicity densities for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. The solid curves are the Toward region. The sparse dashed curves are the Away region. The dense dashed curves are the Transverse region.

Transverse region average charged particle densities for pT>0.2 GeV/c (open symbols) and pT>0.5 GeV/c (filled symbols). Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune.

Charged particle <pT> for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. Note the three curves overlap for the Transverse region calculations.

More…